1 |
Modelo de rede para estudo de confinamento de águaFonseca, Tássylla Oliveira January 2016 (has links)
O estudo do processo de fusão e solidificação da água contida dentro de materiais confinantes tem sido amplamente discutido em química, biologia, física, geologia, e com diversas aplicações tecnológicas, tais como aplicação na fabricação de etanol de segunda geração, ou etanol celulósico, separação de fases, fabricação de nanomateriais. Pesquisas mostraram que as temperaturas de transição da água nanoconfinada são muito sensíveis ao diâmetro do poro, mas que podem ser pouco afetadas pela natureza, hidrofóbica ou hidrofílica, da superfície do poro. Outra importante constatação em experimentos de fusão e congelamento em nanoporos é que nem toda água presente nos poros pode ser cristalizada até gelo. A existência de uma camada de água pré-fundida em nanoporos tem sido confirmada através de experimentos. Com o objetivo de entender mais profundamente como a temperatura de transição da água confinada depende da natureza da parede confinante e do tamanho do confinamento, propõe-se um modelo de nanoporos de celulose para o confinamento, onde varia-se o diâmetro e comprimento do nanoporo, além da natureza da parede do nanoporo. Nossos estudos, mostram que para sistemas hidrofóbicos, com formação de camada de água líquida na parede, as temperaturas de transição variam desde relativamente baixas, para menores valores de calor latente, até atingindo a temperatura de transição da água bulk, para calor latente mais alto. Enquanto que para sistemas hidrofílicos, para nenhum dos valores de calor latente trabalhados, e para nenhum tamanho do sistema, a temperatura de transição atinge o valor de bulk. / The study of the fusion process and water solidification inside confining materials has been widely discussed in Chemistry, Biology, Physics, and Geology, and has various technological applications as the usage and fabrication of second generation ethanol or cellulosic ethanol, phase separation, and nanomaterials fabrications. Researches have shown that nanoconfined water’s transition temperature are highly sensitive to the pore. Another interesting remark on freezing and fusion experiments on nanopores is that not all water present in pores can be crystallized into ice. The existence of a water layer pre-melted on nanopores has been confirmed through experiments. Aiming at understanding deeply how water’s transition temperature depends on the nature of the confining wall and size, a cellulose nanopore model is proposed to the confinement, where the nanopore diameter and length are varied, besides the nature of the wall of the nanopore. Our studies show that for hydrophobic systems, with the liquid water layer formation on the wall, the transition temperatures vary from relatively low latent heat to smaller values, even reaching the temperature transition on bulk water to higher latent heat. While for hydrophilic systems, for none of the latent heat used and no system size the transition temperature reaches bulk value.
|
2 |
Modelo de rede para estudo de confinamento de águaFonseca, Tássylla Oliveira January 2016 (has links)
O estudo do processo de fusão e solidificação da água contida dentro de materiais confinantes tem sido amplamente discutido em química, biologia, física, geologia, e com diversas aplicações tecnológicas, tais como aplicação na fabricação de etanol de segunda geração, ou etanol celulósico, separação de fases, fabricação de nanomateriais. Pesquisas mostraram que as temperaturas de transição da água nanoconfinada são muito sensíveis ao diâmetro do poro, mas que podem ser pouco afetadas pela natureza, hidrofóbica ou hidrofílica, da superfície do poro. Outra importante constatação em experimentos de fusão e congelamento em nanoporos é que nem toda água presente nos poros pode ser cristalizada até gelo. A existência de uma camada de água pré-fundida em nanoporos tem sido confirmada através de experimentos. Com o objetivo de entender mais profundamente como a temperatura de transição da água confinada depende da natureza da parede confinante e do tamanho do confinamento, propõe-se um modelo de nanoporos de celulose para o confinamento, onde varia-se o diâmetro e comprimento do nanoporo, além da natureza da parede do nanoporo. Nossos estudos, mostram que para sistemas hidrofóbicos, com formação de camada de água líquida na parede, as temperaturas de transição variam desde relativamente baixas, para menores valores de calor latente, até atingindo a temperatura de transição da água bulk, para calor latente mais alto. Enquanto que para sistemas hidrofílicos, para nenhum dos valores de calor latente trabalhados, e para nenhum tamanho do sistema, a temperatura de transição atinge o valor de bulk. / The study of the fusion process and water solidification inside confining materials has been widely discussed in Chemistry, Biology, Physics, and Geology, and has various technological applications as the usage and fabrication of second generation ethanol or cellulosic ethanol, phase separation, and nanomaterials fabrications. Researches have shown that nanoconfined water’s transition temperature are highly sensitive to the pore. Another interesting remark on freezing and fusion experiments on nanopores is that not all water present in pores can be crystallized into ice. The existence of a water layer pre-melted on nanopores has been confirmed through experiments. Aiming at understanding deeply how water’s transition temperature depends on the nature of the confining wall and size, a cellulose nanopore model is proposed to the confinement, where the nanopore diameter and length are varied, besides the nature of the wall of the nanopore. Our studies show that for hydrophobic systems, with the liquid water layer formation on the wall, the transition temperatures vary from relatively low latent heat to smaller values, even reaching the temperature transition on bulk water to higher latent heat. While for hydrophilic systems, for none of the latent heat used and no system size the transition temperature reaches bulk value.
|
3 |
Modelo de rede para estudo de confinamento de águaFonseca, Tássylla Oliveira January 2016 (has links)
O estudo do processo de fusão e solidificação da água contida dentro de materiais confinantes tem sido amplamente discutido em química, biologia, física, geologia, e com diversas aplicações tecnológicas, tais como aplicação na fabricação de etanol de segunda geração, ou etanol celulósico, separação de fases, fabricação de nanomateriais. Pesquisas mostraram que as temperaturas de transição da água nanoconfinada são muito sensíveis ao diâmetro do poro, mas que podem ser pouco afetadas pela natureza, hidrofóbica ou hidrofílica, da superfície do poro. Outra importante constatação em experimentos de fusão e congelamento em nanoporos é que nem toda água presente nos poros pode ser cristalizada até gelo. A existência de uma camada de água pré-fundida em nanoporos tem sido confirmada através de experimentos. Com o objetivo de entender mais profundamente como a temperatura de transição da água confinada depende da natureza da parede confinante e do tamanho do confinamento, propõe-se um modelo de nanoporos de celulose para o confinamento, onde varia-se o diâmetro e comprimento do nanoporo, além da natureza da parede do nanoporo. Nossos estudos, mostram que para sistemas hidrofóbicos, com formação de camada de água líquida na parede, as temperaturas de transição variam desde relativamente baixas, para menores valores de calor latente, até atingindo a temperatura de transição da água bulk, para calor latente mais alto. Enquanto que para sistemas hidrofílicos, para nenhum dos valores de calor latente trabalhados, e para nenhum tamanho do sistema, a temperatura de transição atinge o valor de bulk. / The study of the fusion process and water solidification inside confining materials has been widely discussed in Chemistry, Biology, Physics, and Geology, and has various technological applications as the usage and fabrication of second generation ethanol or cellulosic ethanol, phase separation, and nanomaterials fabrications. Researches have shown that nanoconfined water’s transition temperature are highly sensitive to the pore. Another interesting remark on freezing and fusion experiments on nanopores is that not all water present in pores can be crystallized into ice. The existence of a water layer pre-melted on nanopores has been confirmed through experiments. Aiming at understanding deeply how water’s transition temperature depends on the nature of the confining wall and size, a cellulose nanopore model is proposed to the confinement, where the nanopore diameter and length are varied, besides the nature of the wall of the nanopore. Our studies show that for hydrophobic systems, with the liquid water layer formation on the wall, the transition temperatures vary from relatively low latent heat to smaller values, even reaching the temperature transition on bulk water to higher latent heat. While for hydrophilic systems, for none of the latent heat used and no system size the transition temperature reaches bulk value.
|
4 |
Location Of Sinkhole Confining Breach Using Groundwater Flow Patterns Derived From Cone Penetration TestingMarinuzzi, Natalie Romina 01 January 2004 (has links)
Dynamic forces in the hydrologic cycle move underground water through Florida's carbonate rocks dissolving chemical components of the rocks, leaving behind caves, solution pipes, and other voids that result in a karst terrain. Ravelling is the common subsidence mechanism throughout most of Florida where unconsolidated materials filter downward into voids in the underlying limestone. A cavity in the overburden develops and enlarges over a period of many years. The enlarged cavity is also known as sinkhole. The investigations of sinkhole characteristics and potential involve studying the regional geology, hydrology and mapping historic sinkholes that have occurred in the area. Use of Cone Penetration Test (CPT) soundings, in conjunction with conventional soil borings are becoming more common in the assessment of subsurface soil conditions in the vicinity of sinkhole-related ground surface. The penetration resistance data by CPT can determine the presence and extent of raveled soil zones characteristic of sinkhole features, and the penetration pore water pressure data can be used to determine the integrity of the clay confining unit at each test sounding location. The objective of this study is to identify the possible location of the confining breach at a sinkhole in Seminole County. The methods used in the assessment of the sinkhole's subsurface conditions were Standard Penetration Test (SPT), which provided information that helped to identify the location of the ravelled zones within the soil profile, and Cone Penetration Test that gave information of the piezometric water levels obtained from the pore pressure dissipation curves. The total head was calculated from the piezometric water levels corresponding to the different elevations. The data were found to exhibit a downward behavior of the total head, starting at around elevation 50 feet, NGVD that extended towards lower elevations. The SPT boring log identified a ravelled zone starting at 31 feet approximately. From both information it was possible to establish that the hydraulic head was influenced by the proximity of the ravelled zones, where the head precipitated rapidly as the elevation decreased. From the result of this study, it was concluded that the location of the breach in the confining layer started at 61.8 feet deep below the ground surface. Potentiometric contour lines at elevation 24.40 feet denoted flow patterns of water from the surroundings of the depression towards the approximate location of the center, which is the existing of subsurface cavity.
|
5 |
A constitutive law for loess at its natural moisture content and low-confining pressuresBral, Kevin M. January 1982 (has links)
No description available.
|
6 |
Comparative Surface Thermodynamic Analysis of New Fluid Phase Formation in Various Confining GeometriesZargarzadeh, Leila Unknown Date
No description available.
|
7 |
GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 SEQUESTRATIONBandy, Ralph E., III 01 January 2012 (has links)
Carbon sequestration, or carbon capture and storage (CCS), is the process of capturing anthropogenically generated CO2, transporting the CO2 to an injection site, and then injecting the CO2 into suitable reservoirs for long-term storage, or sequestration. Integral to the successful sequestration of CO2 is an understanding of the confining intervals (seals) above potential reservoirs. The purpose of this thesis research was to perform a detailed geological study of the Eau Claire Formation and equivalent parts of the Conasauga Group in part of the Ohio River Valley region in order to better evaluate its suitability as a confining interval for the underlying Mount Simon Sandstone and basal sandstone equivalents. Detailed correlations of subsurface data using available geophysical logs, cores, and cuttings are used to correlate facies between the Eau Claire Formation in western and central Kentucky and the Conasauga Group in eastern Kentucky and neighboring areas. Additional information on the confining potential of the Eau Claire and Conasauga formations were obtained through porosity evaluation and XRF analyses in combination with available geochemical and permeability data, which are keyed to the correlations.
|
8 |
Geochemical Determination of the Fate and Transport of Injected Fresh Wastewater to a Deep Saline AquiferWalsh, Virginia M 16 July 2012 (has links)
Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry.
Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO2 -enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.
|
9 |
Improvement of Efficiencies and Lifetimes of White Light-Emitting Organic Diodes Using a Novel Co-evaporated ‘Hole-Confining’ StructureRakurthi, Aparna 06 August 2010 (has links)
No description available.
|
10 |
Hole-Confining Concept for Blue Organic Light Emitting DiodeDarade, Balasaheb S. January 2011 (has links)
No description available.
|
Page generated in 0.0888 seconds