• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 10
  • 9
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 104
  • 104
  • 104
  • 46
  • 34
  • 26
  • 23
  • 22
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Strings, Conformal Field Theory and Noncommutative Geometry

Matsubara, Keizo January 2004 (has links)
<p>This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups <i>U(N)</i> can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open strings in various backgrounds. Here different orbifold theories which are described using simple currents of the chiral algebra are investigated. The formalism is applied to ``branes´´ in <b>Z</b><sub>2</sub><b> </b>orbifolds of the <i>SU(2)</i> WZW-model and to the <i>D</i>-series of unitary minimal models. In Paper 3 two different descriptions of an invariant star-product on <i>S²</i> are compared and the characteristic class that classifies the star-product is calculated. The Fedosov-Nest-Tsygan index theorem is used to compute the characteristic class.</p>
52

Strings, Conformal Field Theory and Noncommutative Geometry

Matsubara, Keizo January 2004 (has links)
This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open strings in various backgrounds. Here different orbifold theories which are described using simple currents of the chiral algebra are investigated. The formalism is applied to ``branes´´ in Z2 orbifolds of the SU(2) WZW-model and to the D-series of unitary minimal models. In Paper 3 two different descriptions of an invariant star-product on S² are compared and the characteristic class that classifies the star-product is calculated. The Fedosov-Nest-Tsygan index theorem is used to compute the characteristic class.
53

Hopf and Frobenius algebras in conformal field theory

Stigner, Carl January 2012 (has links)
There are several reasons to be interested in conformal field theories in two dimensions. Apart from arising in various physical applications, ranging from statistical mechanics to string theory, conformal field theory is a class of quantum field theories that is interesting on its own. First of all there is a large amount of symmetries. In addition, many of the interesting theories satisfy a finiteness condition, that together with the symmetries allows for a fully non-perturbative treatment, and even for a complete solution in a mathematically rigorous manner. One of the crucial tools which make such a treatment possible is provided by category theory. This thesis contains results relevant for two different classes of conformal field theory. We partly treat rational conformal field theory, but also derive results that aim at a better understanding of logarithmic conformal field theory. For rational conformal field theory, we generalize the proof that the construction of correlators, via three-dimensional topological field theory, satisfies the consistency conditions to oriented world sheets with defect lines. We also derive a classifying algebra for defects. This is a semisimple commutative associative algebra over the complex numbers whose one-dimensional representations are in bijection with the topological defect lines of the theory. Then we relax the semisimplicity condition of rational conformal field theory and consider a larger class of categories, containing non-semisimple ones, that is relevant for logarithmic conformal field theory. We obtain, for any finite-dimensional factorizable ribbon Hopf algebra H, a family of symmetric commutative Frobenius algebras in the category of bimodules over H. For any such Frobenius algebra, which can be constructed as a coend, we associate to any Riemann surface a morphism in the bimodule category. We prove that this morphism is invariant under a projective action of the mapping class group ofthe Riemann surface. This suggests to regard these morphisms as candidates for correlators of bulk fields of a full conformal field theories whose chiral data are described by the category of left-modules over H.
54

Empacotamento de fios e teoria do campo conforme em 2D

Silva, Tiago Anselmo da 31 January 2013 (has links)
Submitted by Sandra Maria Neri Santiago (sandra.neri@ufpe.br) on 2016-03-07T19:42:45Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO versão finalt.pdf: 2479188 bytes, checksum: 40682d874a9a13182595ec8c40992750 (MD5) / Made available in DSpace on 2016-03-07T19:42:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO versão finalt.pdf: 2479188 bytes, checksum: 40682d874a9a13182595ec8c40992750 (MD5) Previous issue date: 2013 / Neste trabalho resumimos o estudo do empacotamento de fios em uma região bidimensional planar. Abordamos o problema de um ponto de vista teórico, usando técnicas de campo conforme, e propriedades de escala do modelo, no regime de empacotamento-rígido, são derivadas, de sorte que os expoentes críticos para a energia elástica e para o número de laços da conformação são obtidos. Os resultados apresentam razoável concordância com dados advindos de experimentos e simulações. Também esboçamos uma analogia entre esse sistema e gravitação em duas dimensões, via gravitação de Liouville. / In this work we summarize the study of the packaging of wire in a planar two-dimensional region. We approach the problem from a theoretical point of view, using techniques of conformal field, and scaling properties of the model, in the tight-packing configuration, are derived, so that the critical exponents for the elastic energy and the number of loops of the conformation are obtained. The results show reasonable agreement with data coming from experiments and simulations. We also outline an analogy between this system and gravitation in two dimensions, via Liouville gravity.
55

Férmions em teorias de campos de supercordas / Fermions in superstring field theories

Luciano Barosi de Lemos 06 May 2003 (has links)
O objetivo deste trabalho é calcular a ação de teoria de campos de supercordas para os dois primeiros níveis de massa da supercorda, incluindo os dois setores de projeção GSO. Considerando uma corda tipo II-A na presença de uma D9-brana instável, calcula-se a ação para o táquion, o campo de gauge e os férmions GSO(+) e GSO(-). O trabalho é realizado usando o formalismo híbrido e usando-se a ação de campos de supercordas de Berkovits, que inclui o setor Ramond. Para tanto, inclui-se amplo material de revisão sobre teorias e teorias de campos de supercordas. A construção de operadores de vértice GSO(-) no formalismo híbrido é feita em detalhes. Considerações sobre a ação obtida e perspectivas futuras do trabalho são discutidas no final. / The goal of this work is to compute the superstring field theory action contribution for the two first mass level of the superstring, including both GSO sectors. A type IIA superstring in the presence of an unstable non-BPS D9 brane is considered and the computation of the action for the Tachyon, Gauge Field and Massless fermions from GSO(+) and GSO(-) sectors is done. The main work is accomplished using the hybrid formalism and the superstring field theory action of Berkovits, including the Ramond Sector. This task is accomplished by including revision material thoroughly, for conformal and super conformal field theory. Construction of physical GSO(-) vertex operators is considered in detail. At the end, theres a discussion about the action for these fields and some future perspectives are considered.
56

Lessons for Conformal Field Theories from Bootstrap and Holography

Sen, Kallo January 2016 (has links) (PDF)
The work done in this thesis includes an exploration of both the conformal field theory techniques and holographic techniques of the Gauge/Gravity duality. From the field theory, we have analyzed the analytical aspects of the Conformal Bootstrap program to gain handle on at least a part of the CFT spectrum. The program applies equally to the strongly coupled as well as the weakly coupled theories. We have considered both the regimes of interest in this thesis. In the strongly coupled sector, as we have shown that it is possible to extract information about the anomalous dimensions, of a particular subset of large spin operators in the spectrum, as a function of the spin and twist of these operators. The holographic analog of the anomalous dimensions from CFT are the binding energies of generalized free fields in the bulk, which has also been analyzed in this thesis. On the contrary, in the weakly coupled sector, the same idea can be used to calculate the anomalous dimensions of operators, with any spin and dimension in an expansion. We have considered a simple set of scalar operators, whose anomalous dimensions are reproduced correctly up to O( 2). In another holographic calculation, we have analyzed generic higher derivative theories of gravity, which corresponds to boundary theories with in finite colors but finite `t Hooft coupling. Certain universal aspects of these theories, such as anomalies and correlation functions are also calculated. The three point functions for these higher derivative theories will serve as a building block for considering four point functions for finitely coupled boundary CFTs. In the conclusion, we have pointed out the directions of interest which could be locating the bulk duals of large N finitely coupled theories, or that of an intermediate theory with both finite `t Hooft coupling as well as finite gauge group, with a speculative string theory dual.
57

Intégrabilité du chaos multiplicatif gaussien et théorie conforme des champs de Liouville / Integrability of Gaussian multiplicative chaos and Liouville conformal field theory

Remy, Guillaume 03 July 2018 (has links)
Cette thèse de doctorat porte sur l’étude de deux objets probabilistes, les mesures de chaos multiplicatif gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane en 1985 et il s’agit aujourd’hui d’un objet extrêmement important en théorie des probabilités et en physique mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, “Quantum geometry of bosonic strings”. Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme des champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Ceci est précisément ce que nous développerons pour le GMC sur le cercle unité. Nous écrirons les équations BPZ qui fournissent des relations non triviales sur le GMC. Le résultat final est la densité de probabilité pour la masse totale de la mesure de GMC sur cercle unité ce qui résout une conjecture établie par Fyodorov et Bouchaud en 2008. Par ailleurs, il s'avère que des techniques similaires permettent également de traiter un autre cas, celui du GMC sur le segment unité, et nous obtiendrons de même des formules qui avaient été conjecturées indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. La dernière partie de cette thèse consiste en la construction de la LCFT sur un domaine possédant la topologie d’une couronne. Nous suivrons les méthodes introduites par David- Kupiainen-Rhodes-Vargas même si de nouvelles techniques seront requises car la couronne possède deux bords et un espace des modules non trivial. Nous donnerons également des preuves plus concises de certains résultats connus. / Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC) measures and Liouville conformal field theory (LCFT). GMC measures were first introduced by Kahane in 1985 and have grown into an extremely important field of probability theory and mathematical physics. Very recently GMC has been used to give a probabilistic definition of the correlation functions of LCFT, a theory that first appeared in Polyakov’s 1981 seminal work, “Quantum geometry of bosonic strings”. Once the connection between GMC and LCFT is established, one can hope to translate the techniques of conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. This is precisely what we develop for GMC on the unit circle. We write down the BPZ equations which lead to non-trivial relations on the GMC. Our final result is an exact probability density for the total mass of the GMC measure on the unit circle. This proves a conjecture of Fyodorov and Bouchaud stated in 2008. Furthermore, it turns out that the same techniques also work on a more difficult model, the GMC on the unit interval, and thus we also prove conjectures put forward independently by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in 2009. The last part of this thesis deals with the construction of LCFT on a domain with the topology of an annulus. We follow the techniques introduced by David-Kupiainen- Rhodes-Vargas although novel ingredients are required as the annulus possesses two boundaries and a non-trivial moduli space. We also provide more direct proofs of known results.
58

Kinematics of Conformal Field Theory and Diagrams in AdS Space / 共形場理論における運動学とAdS空間のダイアグラム

Kyono, Hideki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21559号 / 理博第4466号 / 新制||理||1641(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 教授 田中 貴浩, 教授 高柳 匡 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
59

Otevřená strunová teorie pole v přístupu oříznutí levelem / Level Truncation Approach to Open String Field Theory

Kudrna, Matěj January 2019 (has links)
Given a D-brane background in string theory (or equivalently boundary conditions in a two dimensional conformal field theory), classical solutions of open string field theory equations of motion are conjectured to describe new D-brane backgrounds (boundary conditions). In this thesis we study these solutions in the bosonic open string field theory using the level truncation approach, which is a numerical approach where the string field is truncated to a finite number of degrees of freedom. We start with a review of the theoretical background and numerical methods which are needed in the level truncation approach and then we discuss solutions in several different back- grounds. First we discuss universal solutions, which do not depend on the open string back- ground, then we analyze solutions of the free boson theory compactified on a circle or on a torus, then marginal solutions in three different approaches and finally solutions in theories which in- clude the A-series of Virasoro minimal models. In addition to known D-branes, we find so-called exotic solutions which potentially describe yet unknown boundary states. 1
60

Advanced integrability techniques and analysis for quantum spin chains / Analyse et techniques avancées d'intégrabilité pour l'étude de chaînes quantiques de spins

Granet, Etienne 03 September 2019 (has links)
Dans cette thèse sont principalement étudiés des systèmes quantiques intégrables critiques avec l’ansatz de Bethe qui ont la propriété particulière d’être non-unitaires ou non-compacts. Ceci concerne des modèles de physique statistique non-locaux tels que la percolation, mais aussi par exemple les systèmes désordonnés. Ce manuscrit présente à la fois des études détaillées de la limite continue de modèles intégrables sur réseau, et développe de nouvelles techniques pour étudier cette correspondance. Dans une première partie nous étudions en détail la limite continue de chaînes de superspins non-unitaires (et parfois non-compactes) qui ont une symétrie orthosymplectique. Nous montrons qu’il s’agit de modèles sigma sur supersphère en calculant leur spectre avec la théorie des champs, avec l’ansatz de Bethe, et numériquement. Leur non-unitarité autorise une brisure spontanée de symétrie habituellement interdite par le théorème de Mermin-Wagner. Leur caractère de perturbation marginale d’une théorie conforme des champs logarithmique est particulièrement étudié. Nous établissons également une correspondance précise entre le spectre et des configurations de boucles avec intersections, et obtenons de nouveaux exposants critiques pour les chemins non-recouvrants compacts ainsi que leurs corrections logarithmiques multiplicatives. Cette étude fut par ailleurs l’occasion de développer une nouvelle méthode pour calculer le spectre d’excitation d’une chaîne de spin quantique critique à partir de l’ansatz de Bethe, incluant les corrections logarithmiques, également en présence de racines de Bethe dites ’en chaînes’, et qui évite les méthodes de Wiener-Hopf et les équations intégrales non-linéaires. Dans une deuxième partie nous abordons l’influence d’un champ magnétique sur une chaîne de spin quantique et montrons que des séries convergentes peuvent être obtenues pour plusieurs quantités physiques telles que l’aimantation acquise ou les exposants critiques, dont les coefficients peuvent être calculés efficacement par récurrence. La structure de ces relations de récurrence permet d’étudier génériquement le spectre d’excitation, et elles sont applicables y compris dans certains cas où les racines de Bethe sont sur une courbe dans le plan complexe. Nous espérons que l’étude de la continuation analytique de ces séries puisse être utile pour les chaînes non-compactes. Par ailleurs, nous montrons que les fluctuations à l’intérieur de la courbe arctique du modèle à six vertex avec conditions aux bords de type mur sont décrites par un champ Gaussien libre avec une constante de couplage dépendant de la position, qui peut être calculée à partir de l’énergie libre de la chaîne XXZ avec une torsion imaginaire dans un champ magnétique. / This thesis mainly deals with integrable quantum critical systems that exhibit peculiar features such as non-unitarity or non-compactness, through the technology of Bethe ansatz. These features arise in non-local statistical physics models such as percolation, but also in disordered systems for example. The manuscript both presents detailed studies of the continuum limit of finite-size lattice integrable models, and develops new techniques to study this correspondence. In a first part we study in great detail the continuum limit of non-unitary (and sometimes non-compact) super spin chains with orthosymplectic symmetry which is shown to be supersphere sigma models, by computing their spectrum from field theory, from the Bethe ansatz, and numerically. The non-unitarity allows for a spontaneous symmetry breaking usually forbidden by the Mermin-Wagner theorem. The fact that they are marginal perturbations of a Logarithmic Conformal Field Theory is particularly investigated. We also establish a precise correspondence between the spectrum and intersecting loops configurations, and derive new critical exponents for fully-packed trails, as well as their multiplicative logarithmic corrections. During this study we developed a new method to compute the excitation spectrum of a critical quantum spin chain from the Bethe ansatz, together with their logarithmic corrections, that is also applicable in presence of so-called ’strings’, and that avoids Wiener-Hopf and Non-Linear Integral Equations. In a second part we address the problem of the behavior of a spin chain in a magnetic field, and show that one can derive convergent series for several physical quantities such as the acquired magnetization or the critical exponents, whose coefficients can be efficiently and explicitely computed recursively using only algebraic manipulations. The structure of the recurrence relations permits to study generically the excitation spectrum content – moreover they are applicable even to some cases where the Bethe roots lie on a curve in the complex plane. It is our hope that the analytic continuation of such series might be helpful the study non-compact spin chains, for which we give some flavour. Besides, we show that the fluctuations within the arctic curve of the six-vertex model with domain-wall boundary conditions are captured by a Gaussian free field with space-dependent coupling constant that can be computed from the free energy of the periodic XXZ spin chain with an imaginary twist and in a magnetic field.

Page generated in 0.2966 seconds