Spelling suggestions: "subject:"conjecture dde birch ett swinnerton"" "subject:"conjecture dde birch ett swinnerton's""
1 |
P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields / Formule de Gross-Zagier P-adique pour les points de Heegner sur les courbes de Shimura sur corps totalement réelsMa, Li 30 September 2014 (has links)
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle. / The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero.
|
2 |
Autour de la conjecture de paritéDe La Rochefoucauld, Thomas 22 October 2012 (has links) (PDF)
Cette thèse porte sur des questions liées à la conjecture de parité. On démontre la conjecture de p-parité pour un certain twist d'une courbe elliptique sur un corps local. On en déduit des résultats globaux d'invariance de la conjecture de p-parité (pour une courbe elliptique) par certaines extensions. Avec l'objectif de généraliser les résultats précédents, on démontre une formule pour les signes locaux des représentations essentiellement symplectiques et modérément ramifiées du groupe de Weil. Cette formule généralise celle, déjà connue, pour les courbes elliptiques ayant potentiellement bonne réduction. Finalement, on fait un premier pas vers la généralisation escomptée en comparant les nombres de Tamagawa et les constantes de régulation pour certains prémotifs.
|
Page generated in 0.0787 seconds