Spelling suggestions: "subject:"conjecture dde beilinson"" "subject:"conjecture dde gilinson""
1 |
Étude de la valeur en s=2 de la fonction L d'une courbe elliptiqueBrunault, François 09 December 2005 (has links) (PDF)
Nous étudions dans cette thèse la valeur spéciale des fonctions L des courbes elliptiques, et plus généralement des formes modulaires de poids 2, au premier point entier non critique, à<br />savoir s=2. Nous démontrons une version explicite d'un théorème de Beilinson relatif à cette valeur spéciale : pour toute forme parabolique primitive f de poids 2, niveau N ≥ 1 et caractère \psi, et pour tout caractère de Dirichlet \chi modulo N (pair, primitif et distinct du conjugué de \psi), nous exprimons L(f,2) L(f,\chi,1) comme régulateur d'un symbole de Milnor explicite associé à des unités modulaires de X_1(N). En niveau \Gamma_1(p), p premier, nous en déduisons que les symboles de Milnor associés aux unités modulaires de X_1(p) engendrent l'espace d'arrivée du régulateur de Beilinson. Utilisant l'appendice par Merel, nous donnons une formule explicite et universelle pour L(E,2), E courbe elliptique de conducteur p premier, en termes des valeurs tordues L(E,\chi,1), \chi caractère de conducteur p. Nous suggérons également une reformulation de la conjecture de Zagier pour L(E,2) au niveau de la jacobienne J_1(N) de X_1(N), où N est le conducteur de E. En ce sens, nous proposons un analogue du dilogarithme elliptique pour la jacobienne J d'une courbe algébrique : c'est une fonction R_J des points complexes de J vers le dual de l'espace des 1-formes différentielles holomorphes sur J. Nous montrons que L(f,2) L(f,\chi,1) est combinaison linéaire explicite de valeurs de R_{J_1(N)}, appliquée à f, en des points \Q-rationnels du sous-groupe cuspidal de J_1(N).
|
2 |
Évaluation du régulateur sur une courbe modulaire et valeurs particulièresBouchard, Nicolas 09 1900 (has links)
Bloch et Beilinson ont proposé plusieurs conjectures sur les liens entre les applications régulateurs du groupe de K-théorie algébrique associée à une courbe modulaire et des valeurs spéciales de fonction L.
Fixons N, un entier naturel et considérons le sous-groupe de congruence $\Gamma_0(N)$. Le présent mémoire démontre une formule explicite entre le régulateur de la courbe modulaire $X_0(N)$ appliqué à une forme primitive et une valeur spéciale de la fonction L associée. / Bloch and Beilinson conjectured many relations regarding the regulator of a modular curve. This function from the algebraic K-theory of the modular curve is supposed to be related to special values of L functions. Let N be a positive integer et consider the congruence subgroup $\Gamma_0(N)$. This thesis relates explicitly the regulator of the modular curve $X_0(N)$ applied to some newform with a special value of the newform's L function.
|
Page generated in 0.0913 seconds