• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 34
  • 22
  • 11
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 255
  • 255
  • 89
  • 46
  • 44
  • 36
  • 34
  • 33
  • 32
  • 28
  • 25
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Characterization of Organic and Inorganic Optoelectronic Semiconductor Devices Using Advanced Spectroscopic Methods

Schroeder, Raoul 22 January 2002 (has links)
In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide. / Ph. D.
162

Excitation Energy Transfer In Donor-Acceptor Systems Involving Metal Nanoparticles, And In Conjugated Polymers

Saini, Sangeeta 07 1900 (has links) (PDF)
This thesis consists of two parts and nine chapters. The first part (Part I) presents theoretical studies on non-radiative mode of excitation energy transfer (EET) in donor-acceptor (D-A) systems involving metal nanoparticles. Part I contains four chapters and describes EET in following different D-A systems: (i) dye and a spherical metal nanoparticle of different sizes, (ii) two spherical metal nanoparticles, and (iii) two prolate shaped metal nanoparticles at different relative orientations. Part II provides a detailed study on the origin of photochemical funneling of excitation energy in conjugated polymers like poly-[phenylenevinylene] (PPV) and consists of three chapters. The ninth chapter provides a concluding note. The thesis begins with a basic introduction on Forster resonance energy transfer(FRET), presented in chapter 1. This chapter provides a detail derivation of Forster’s rate expression for a non-radiative process of EET from a donor to an acceptor molecule and discusses the limitations of Forster theory. The chapter highlights the huge success of FRET technique in understanding biological processes assisted by changes in conformations of biopolymers under conditions where Frster theory is valid. The chapter also discusses practical limitations of FRET technique such as use of pre-averaged value of orientation factor and photobleaching of dye molecules. Part I starts with chapter 2 which explains the advantages of using metal nanoparticles over dye molecules in D-A systems. The chapter discusses recent experimental re-ports of excitation energy transfer to nanoparticles, now commonly referred to as nanoparticle surface energy transfer (NSET). Theories describing the process of EET from a dye molecule (dye molecule is assumed to be a point dipole) to a planar metallic surface are discussed. In the case of energy transfer from a donor dye molecule to a planar metallic surface, the distance dependence of the rate of EET is found to vary as 1/d4 where dis a distance from the center of a dye molecule to the metallic surface. This is unlike conven-tional FRET where rate of EET follows 1/R6 distance dependence with R as a distance between the centers of D and A. Also, a recent experimental study by Yun et al [J. Am. Chem. Soc. 127, 3115 (2005)] on energy transfer from a dye molecule to a spherical gold nanoparticle reports that the rate of EET follows 1/d4 distance dependence. The remaining chapters of this part focus on understanding this deviation from the Forster theory in different D-A systems. Chapter 3 describes quantized electro-hydrodynamic approach used to model the plasmonic excitations in metal nanoparticles. The optical absorption frequencies of nanoparticles computed here are subsequently used in chapters 4 and 5 for the calculation of the rate of EET. The chapter discusses the merits and de-merits of electro-hydrodynamic approach in comparison to other available techniques. The electro-hydrodynamic method of calculating the absorption frequencies provide a physically appealing, mathematically simple and numerically tractable approach to the problem and is also at the same time, semi-quantitatively reliable. The optical frequencies obtained as a function of size and aspect ratio of metal nanoparticles are found to be in good agreement with physical predictions. Chapter 4 studies the distance dependence of rate of EET for a D-A system similar to one studied by Yun et al [J. Am. Chem. Soc. 127, 3115 (2005)]. The chapter contains the relevant derivations of the quantities required for computing the interaction matrix elements. The dependence of the rate of EET on R is found surprisingly to be in agreement with Forster theory even at intermediate distances compared to the size of spherical nanoparticles (a). However, the dependence of rate of EET on d is found to vary as 1/dσwith σ=3 - 4 at intermediate distances which is in good agreement with the experimental results of Yun et al. At large values of d, the distance dependence of rate is found to vary as 1/d6 . The chapter discusses the physical basis behind these results. The theory predicts a non-trivial dependence of rate on the size of a nanoparticle which ultimately attains the asymptotic a3 size dependence. The rate of EET is also studied for different orientations of dye molecule. Chapter 5 studies surface plasmon mediated EET between two metal nanoparticles. The rate of EET between two prolate and spherical shaped silver nanoparticles is studied as a function of Rand d. d, in present chapter denotes surface-to-surface separation distance between two nanoparticles. In case of EET between two non-spherical nanoparticles, even at separations larger than the size of the nanoparticle, a significant deviation from 1/R6 dependence is obtained. However, 1/R6 distance dependence of EET rate is found to be robust for spherical nanoparticles over an entire range of separations. The deviation of rate from 1/R6 distance dependence becomes more pronounced with in-crease in the aspect ratio of the nanoparticle. The relative orientation of the nanoparticles is found to markedly influence the R-dependence of EET rate. Interestingly, the relative orientation of nanoparticles effect the d-distance dependence of the rate to a lesser extend in comparison to the R-dependence of the rate. Therefore, we predict that for non-spherical nanoparticles studying EET rate as a function of will provide more conclusive results. The chapter also discusses the size dependence of rate of EET for this particular D-A system. In Part II, excitation energy transfer (EET) in a conjugated polymer is studied. To start with, chapter 6 provides a brief introduction to photophysics of conjugated polymers. The chapter discusses the nature of photoexcitations in these systems and stresses on the influence of polymer’s morphology on the optical properties of conjugated polymers. Chapter 7 describes the theory used for modeling conjugated polymer chain. A polymer chain consists of number of spectroscopic units (chromophores) of varying lengths. The average length of chromophores in conjugated polymer depends on defect concentration. In the present study we treat an excitation generated on each chromophore within “particle-in-a-box” formalism but one that takes into account the electron-hole interactions. The transition dipole moments and the radiative rates are computed for different lengths of chromophores with parameters appropriate for PPV chain. These quantities are used in chapter 8 for calculating the absorption and emission spectra of conjugated polymer chains at different defect concentrations. The main aim of Chapter 8 is to understand the origin of photochemical funneling of excitation energy in conjugated polymers. PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poissonian distribution. We observe that the Poissonian distribution of length segments explains the optical spectra of PPV rather well than the Gaussian distribution. The Pauli’s master equation is employed to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirm the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The calculations show that even in steady state more than one type of chromophore contribute towards the emission spectrum. The observed difference between the calculated emission spectra at equilibrium and in steady state indicates the existence of local domains in a polymer chain within which the non-radiative excitation energy transfer from shorter to longer chromophores take place. These results are found to be in agreement with recent experimental reports. The concluding chapter 9 gives a brief summary of the outcome of the thesis and ends up with suggestion of a few future problems which in current scenario are of great interest.
163

Measurements of exciton diffusion in conjugated polymers

Shaw, Paul E. January 2009 (has links)
The exciton diffusion length, which is the distance an exciton can diffuse in its lifetime, is an important parameter that has a critical impact on the operation of many organic optoelectronic devices, including organic solar cells, light emitting diodes and lasers. Knowledge of the exciton diffusion length can be a powerful aid for the design and optimisation of these devices. This thesis details the development of techniques based on time-resolved fluorescence for measuring the exciton diffusion in organic semiconductors. Two main methods were used to investigate exciton diffusion in the conjugated polymers P3HT, MEH-PPV and F8BT: the surface quenching technique and exciton-exciton annihilation. In particular, the surface quenching technique was adapted to avoid some of the potential pitfalls that have plagued earlier measurements. Using a titania quencher, measurements were performed using the surface quenching technique and fitted with an exciton diffusion model, allowing the calculation of the exciton diffusion length. Results from measurements of the exciton-exciton annihilation rate, which is a diffusion controlled process, where in good agreement with those from surface quenching, confirming the robustness of this twofold approach. A novel method for the control of the β-phase conformation in PFO films was used to produce films containing varying concentrations of β-phase. Exciton-exciton annihilation was used to investigate exciton diffusion in these films, revealing a gradual rise with increasing β-phase fraction due to improved interconnectivity. This work demonstrates how simple processing techniques can be used to control both film morphology and the exciton diffusion. The thickness dependence of the photoluminescence lifetime in conjugated polymers is a phenomenon that has so far received little attention and, thus, remained unexplained. This study demonstrates that it is not due to exciton quenching by external factors, but can be explained by a change in the morphology with decreasing film thickness.
164

FLUORINATED ARENE, IMIDE AND UNSATURATED PYRROLIDINONE BASED DONOR ACCEPTOR CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES

Liyanage, Arawwawala Don T 01 January 2013 (has links)
FLUORINATED ARENE, IMIDE AND LACTAM-FUNCTIONALIZED DONOR ACCEPTOR CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituent’s affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (eg: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3’-dialkyl(3,3’-R2T2) or 3,3’-dialkoxy bithiophene (3,3’-RO2T2) units as electron donors. A detail study was done using 3,3’-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5’ positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications.
165

OPTIMIZATION OF THE OPTICAL AND ELECTROCHEMICAL PROPERTIES OF DONOR-ACCEPTOR COPOLYMERS THROUGH FUNCTIONAL GROUP AND SIDE CHAIN MODIFICATION

Seger, Mark J. 01 January 2013 (has links)
Donor-acceptor copolymers have received a great deal of attention for application as organic semiconductors, in particular as the active layers in low-cost consumer electronics. The functional groups grafted to the polymer backbones generally dictate the molecular orbital energies of the final materials as well as aid in self-assembly. Additionally, the side chains attached to these functional groups not only dictate the solubility of the final materials, but also their morphological characteristics. The bulk of the research presented in this dissertation focuses on the synthesis and structure-property relationships of polymers containing novel acceptor motifs. Chapter 2 focuses on the synthesis of 1,2-disubstituted cyanoarene monomers as the acceptor motif for copolymerization with known donors. It was found that cyanation of both benzene and thiophene aromatic cores resulted in a decrease of the molecular orbital energy levels. Additionally, the small size of this functional group allowed favorable self-assembly and close π-stacking to occur relative to related acceptor cores carrying alkyl side chains as evidenced by UV-Vis and WAXD data. Chapter 3 describes the systematic variation of side chain branching length and position within a series of phthalimide-based polymers. Branching of the side chains on bithiophene donor units resulted in the expected increase in solubility for these materials. Furthermore, a correlation was found between the branching position, size, and the HOMO energy levels for the polymers. Additionally, it was demonstrated that branching the alkyl side chains in close proximity to polymer backbones does not disrupt conjugation in these systems. A novel acceptor motif based on the 1,3-indanedione unit is presented in Chapter 4. Despite the stronger electron withdrawing capability of this functional group relativeto phthalimide, it was found that polymers based on this unit have the same HOMO molecular orbital energy levels as those presented in Chapter 3. It was found, however, the presence of orthogonal side chains greatly enhanced the solubility of the final polymers. Additionally, UV-Vis and WAXD measurements revealed that thermal annealing had a profound effect on the ordering of these polymers. Despite the presence of orthogonal side chains, long range order and close π-stacking distances were still achieved with these materials. Finally, alkynyl “spacers” were used in Chapter 5 to separate the solubilizing alkyl side chains from the polymer backbones on bithiophene donor monomers. The alkynyl groups allowed for conjugated polymer backbones to be achieved as well as low HOMO energy levels. A correlation between the side chain size, π-stacking distances and HOMO-LUMO energy levels was measured in this polymer series.
166

Synthesis and structure-properties relationship of alternated π-conjugated copolymers / Synthèse et relation structure-propriétés de copolymères alternés π-conjugués

Oriou, Jules 10 December 2013 (has links)
Tout au long du siècle dernier, l’électronique s’est révélé être un progrès technologique majeur, et ses applications sont tellement nombreuses qu’elles ont envahi notre vie de tous les jours. De par leurs propriétés bien spécifiques, les semi-conducteurs organiques représentent une remarquable alternative aux matériaux inorganiques utilisés actuellement. Cependant, leurs propriétés électriques peuvent être limitées, et l’efficacité des dispositifs composés de tels matériaux ne permet pas encore de rivaliser avec ceux basés sur des matériaux inorganiques. Dans ce contexte, ce travail de thèse a pour objectif de synthétiser et caractériser de nouveaux polymères conjugués et d’étudier leurs propriétés, dans le but d’ajouter de nouveaux matériaux au déjà riche catalogue de polymères semi-conducteurs disponibles, ainsi que de permettre une meilleure compréhension de la relation structure-propriétés dans les systèmes conjugués. Des copolymères alternés composés de motifs carbazole, benzothiadiazole ou encore squaraine ont été synthétisés et caractérisés. De plus, des polymérisations originales et sans catalyseurs métalliques ont été développées. / Within the last century, electronics have become a major technological breakthrough and the resulting applications are so numerous that it has invaded our every-day life. Due to their properties, organic semiconductors have attracted much attention and represent a great alternative to the nowadays used inorganic materials. However, their electrical properties can be limited, and the efficiencies of the resulting devices are still not completely competitive against the inorganic-based ones. In this context, this PhD goal was to synthesize novel conjugated polymers (CPs) and investigate their properties, in order to add novel materials to the already wide catalogue of semiconducting polymers and allow a better comprehension of the structure-properties relationship in conjugated systems. Alternated copolymers based on carbazole, benzothiadiazole, or squaraine were synthesized and characterized. Furthermore, original and metal catalyst-free polymerizations were successfully developed.
167

Patterning of Highly Conductive Conjugated Polymers for Actuator Fabrication

Falk, Daniel January 2015 (has links)
Trilayer polypyrrole microactuators that can operate in air have previously been developed. They consist of two outer layers ofthe electroactive polymer polypyrrole (PPy) and one inner layer of a porous poly(vinylidene flouride) (PVDF) membranecontaining a liquid electrolyte. The two outer layers of PPy are each connected with gold electrodes and separated by the porousPVDF membrane. This microtool is fabricated by bottom-up microfabrication However, porous PVDF layer is not compatible with bottom upmicrofabrication and highly swollen SPE suffers from gold electrode delamination. Hence, in this MSc project/thesis a novelmethod of flexible electrode fabrication with conducting polymers was developed by soft lithography and drop-on-demandprinting. The gold electrodes were replaced by patterned vapor phase polymerized (VPP) poly(3,4-ethylenedioxythiophene) (PEDOT)electrodes due to its high electrical conductivity and versatile process ability. The replacement of the stiff gold electrodes byflexible and stretchable PEDOT allowed high volume change of the material and motions. The PEDOT electrodes werefabricated by patterning the oxidant iron tosylate using microcontact printing and drop-on-demand printing. Moreover, thePVDF membrane has been replaced by a nitrile butadiene rubber/poly(ethylene oxide) semi-interpenetrating polymer network(IPN) to increase ion conductivity and strechability and hence actuator performance.
168

Simulação da dinâmica do estado excitado em semicondutores orgânicos / Simulation of the excited state dynamics in organic semiconductors

Faceto, Angelo Danilo 25 April 2012 (has links)
Neste trabalho, o método de Monte Carlo e a resolução da Equação Mestra foram utilizados para simular o processo de difusão espectral da excitação em um sistema polimérico emissor de luz. A metodologia utilizada incorpora a relaxação energética intramolecular, a migração de energia incoerente entre segmentos conjugados e o processo final radiativo (luminescência). O principal objetivo é comparar os resultados da simulação e de experimentos envolvendo medidas de absorção, de excitação óptica e de luminescência realizadas no IFSC ao longo dos últimos anos ou provenientes da literatura especializada. Além disso, a simulação pretende elucidar a natureza dos processos fotofísicos em semicondutores orgânicos e testar a validade de teorias analíticas existentes, o que é essencial para a aplicação dessa classe de materiais como dispositivos no futuro. Especial atenção é dada na análise do comportamento temporal da difusão espectral em sistemas homogêneos em que o acoplamento dipolar na transferência de energia é realizado entre uma matriz de segmentos conjugados distribuídas aleatoriamente. A temperatura foi incorporada ao modelo. A comparação dos resultados da simulação com os resultados experimentais permitiu comprovar a validade do modelo proposto, do programa utilizado e entender melhor características de parâmetros não conhecidos em polímeros conjugados, como a influência da forma da distribuição energética dos estados eletrônicos e a distribuição e da temperatura no processo de migração do éxciton. Foi possível reproduzir com sucesso os espectros de luminescência e de absorção em polímeros conjugados descritos na literatura. Além disso, a simulação permitiu explicar resultados relacionados a sistemas poliméricos homogêneos anisotrópicos como polímeros estirados por uma tensão mecânica e materiais não homogêneos híbridos contendo polímero conjugado emissor de luz e nanopartículas. A maior contribuição foi o entendimento do efeito da temperatura nas propriedades de emissão como deslocamento espectral e alargamento homogêneo. Efeitos anômalos, como o deslocamento da emissão com a temperatura e o alcance da difusão com o tempo, foram explicados em termos da termalização do estado excitado e frustração da migração. Por fim, foi possível estudar os processos fotofísicos envolvidos em heteroestruturas orgânicas contendo gradiente energético que permitem o controle da migração direcional do éxciton e suas propriedades de emissão a partir dos processos de transferência de energia tipo Förster (dipolo-dipolo). O controle sobre os processos fotofísicos do polímero luminescente foi realizado através da alteração tanto da orientação como do tamanho de conjugação do material de polimérico. / In the present work, the Monte Carlo method and the direct numerical integration of the Master Equation were employed to simulate the excitation spectral diffusion process in light emitting polymeric systems. The methodology employed a competition among the internal intra-molecular relaxation, the inter-molecular incoherent energy transfer via Förster mechanism and the final process that may be a radiative emission or a non radiative relaxation through a suppression center. This works main objective is to compare the simulation results with the experiments of absorption, optical excitation and luminescence carried out in our group, throughout the last years or from the specialized literature. Moreover, the simulation intends to elucidate the nature of the photophysical processes in organic semiconductors and to test the validity of existing theories, what is essential for the application of this class of materials to devices in the future. Special attention is given to the analysis of the time dependence and the effect of temperature in homogenous systems, where the energy transfer and spectral diffusion were carried out through a matrix of randomly distributed conjugated segments coupled by dipole interaction. The comparison of the simulation results with the experimental ones allowed to prove the validity of the model, the computational program and to better understand characteristic of parameters for conjugated polymers which are still studied. Different energy distributions of electronic states, molecular position and orientation are used in order to simulate molecular configurations obtained by various sample preparation methodologies. With the simulation, it was possible to reproduce with success the experimental luminescence and absorption spectra in polymers conjugated described in literature. Besides, the simulation allowed to explain the exciton migration and properties related to temperature, such as the red shift and broadening of the spectral lines of conjugated polymer emission. The non exponential characteristics of the emissions time resolved intensity curves have been reproduced. The simulation was used to understand effects of temperature on the spectral diffusion as well. Anomalies related to spectral shift emission spectra with temperature and the mean diffusion length with time were explained with the thermalization and frustration of the migration at sufficiently low temperatures and at long relaxation times. Finally, it was possible to study the photophysical processes present in organic heterostructures having energy gradient, as well as the control of the properties of emission via changing the Förster type energy transfer processes between emitting polymers. The control over the photophysical process of the luminescent polymer was accomplished by changing both orientation and mean conjugation length of the polymer material.
169

“Preparação e Caracterização de Compósitos Formados por Polímeros Conjugados e Nanopartículas de Óxidos Metálicos”

Santos, Fabio Santana dos 25 October 2013 (has links)
Made available in DSpace on 2017-07-20T12:40:21Z (GMT). No. of bitstreams: 1 FabioSantanaSantos.pdf: 4363488 bytes, checksum: 41a5d6b8fb73b9234813c167b1c4d075 (MD5) Previous issue date: 2013-10-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we sought to develop a methodology for the preparation of composite conductive polymer metal oxides for application in photovoltaic devices. The goal is the preparation of in-situ deposition of polymer and TiO2 oxide, in a single step by Electrochemical Synthesis of the substrates with architecture specially prepared for this. This study was divided into three stages, initially prepared molecules that give may give rise to monomers precursors of conjugated polymers derived from poly-p-phenylenevinylene PPV and polythiophene, groups attached to the aromatic ring of the polymer chain, the type (-O-(CH2) xCH3, X = 9 or 4), and the CN group. We conducted theoretical based on the DFT method (Density Functional Theory) and experimental studies of bromination reactions by different routes, using CCl4 as a solvent, AcOMe and aqueous HBr/KBr. We carried out the preparation of ZnO nanoparticles by hydrothermal route. In a second step was conducted in the preparation of a copolymer (DCN-PPV/PPV) to evaluate the effect of the CN group in the structure. Studies electrochemical synthesis of polymers and copolymers composite polymer/nanoparticulate (TiO2) and (ZnO) oxide in order to create a form of application and the construction of a prototype of a photovoltaic device. We tested two electrochemical systems a compound of acetonitrile (ACN) tetrafluoroborate tetrabutylammonium (TBABF4) for synthesis of polyfluorene (PF) and polybenzofluorene (PBF), we tested for this through the addition of (TiO2) and (ZnO). We also evaluated the electrochemical synthesis of polymer poly-p-phenylene (PPP), polythiophene (PT) and between them copolymer (PPP/PT) in the middle of boron trifluoride diethyl etherate (BFEE), this system is realized The addition of 1% distilled water. Finally, we performed a preliminary study on the application of composites PF and TiO2, MB-PPV and TiO2, synthesized electrochemically in photovoltaic devices made in accordance with the structure (anode/polymer pure or composite/cathode); also being investigated nanolayers influence of the metal insert (NCM) nanolayers in the case of gold, the structure of the device (anode/NCM/ polymer pure or composite/cathode). / Neste trabalho, buscou-se desenvolver uma metodologia para preparação de compósitos polímeros conjugados/óxidos metálicos para aplicação em dispositivos fotovoltaicos. O objetivo foi a preparação in-situ dos polímeros e deposição dos óxido de TiO2, através da síntese eletroquímica sobre os substratos com arquitetura especialmente preparadas para isso. O trabalho foi dividido em três etapas, inicialmente preparou-se moléculas que possam dar origem a monômeros precursores de polímeros conjugados, derivados do poli-p-fenilenovinileno PPV e do politiofeno com os grupos ligados ao anel aromático da cadeia polimérica, do tipo (-O-(CH2)xCH3, X=9 ou 4), e o grupo CN. Foram feitos estudos teóricos baseados em DFT (teoria do funcional de densidade), e experimentais de reações de bromação por diferentes rotas, utilizando como solvente o CCl4, AcOMe e solução aquosa de HBr/KBr. As nanopartículas de ZnO foram sintetizadas pela rota hidrotermal. Em uma segunda etapa foi realizada a preparação de um copolímero (DCN-PPV/PPV) para avaliar o efeito do grupo CN na estrutura. Estudos de síntese eletroquímica de polímeros, copolímeros e compósitos polímero/nanoparticulas de óxido de TiO2 e ZnO, também foram realizados, com o intuito de criar uma forma de aplicação destes na construção de um protótipo de dispositivo fotovoltaico. Foram testados dois sistemas eletroquímicos, um composto por acetonitrila (ACN) e tetrafluoroborato de tetrabutilamonio (TBABF4), para síntese do polifluoreno (PF) e o polibenzofluoreno (PBF), e testou-se para este meio a adição de nanopartículas de oxido de titânio TiO2 e de zinco ZnO. Avaliou-se também a síntese eletroquímica dos polímeros poli-p-fenileno (PPP), politiofeno (PT) e o copolímero entre eles (PPP/PT) em meio de trifluoreto de boro dietil eterato (BFEE). Por fim, foi feito um estudo preliminar sobre a aplicação dos compósitos PF/TiO2 e MB-PPV/TiO2, sintetizados eletroquimicamente em dispositivos fotovoltaicos confeccionados de acordo com a estrutura (ânodo/polímero puro ou compósito/Cátodo); sendo também investigada a influência da inserção de nanocamadas metálicas de ouro (NCM), na estrutura do dispositivo (ânodo/NCM/polímero ou compósito/cátodo).
170

Ground and Excited State Aromaticity : Design Tools for π-Conjugated Functional Molecules and Materials

Dahlstrand, Christian January 2012 (has links)
The main focus of this thesis is on the aromaticity of the ground state and electronically excited states of π-conjugated molecules and polymers, as well as how aromaticity is connected to their properties. The electronic structures of polybenzenoid hydrocarbons (PBHs) were explored through density functional theory (DFT) calculations and the π-component of the electron localization function (ELFπ). The study revealed how the π-electronic structure is influenced by the fusion of double bonds or benzene rings to the PBHs. We also demonstrated that the π-electrons of benzene extend to accommodate as much aromaticity as possible when bond length distorted.   The aromatic chameleon property displayed by fulvenes, isobenzofulvenes, fulvalenes, bis(fulvene)s, and polyfulvenes were investigated using DFT calculations. The tria-, penta-, and heptafulvenes were shown to possess ionization energies and electron affinities which can be tuned extensively by substitution, some of which even outperform TTF and TCNQ, the prototypical electron donor and acceptor, respectively. The singlet-triplet energy gap of pentafulvenes can be tuned extensively by substitution to the point that the triplet state is lower than the singlet state and thus becomes the ground state. The ELFπ of isobenzofulvene shows that the benzene ring in an electronically excited state can be more aromatic than the corresponding ring in the ground state. We have shown that the 6-ring of [5.6.7]quinarene is influenced by a Hückel aromatic resonance structure with 4n+2 π-electrons in the excited quintet state. The bis(fulvene)s which are composed of a donor type heptafulvene and an acceptor type pentafulvene, retain the basic donor-acceptor properties of the two fragments and could function as compact donor-acceptor dyads. A few of the designed polyfulvenes were found to have band gaps below 1 eV at the PBC-B3LYP/6-31G(d) level. Various 2,7-disubstituted fluorenones and dibenzofulvenes were synthesized and their excited state properties were investigated by absorption spectroscopy and time-dependent DFT calculations. It was found that the 1A → 1B transition of ππ* character can be tuned by substitution in the 2,7-positions. The 2,7-bis(N,N-dimethyl) derivatives of fluorenone and dibenzofulvene displayed low energy transitions at 2.18 and 1.61 eV, respectively, in toluene.

Page generated in 0.0664 seconds