• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 531
  • 135
  • 119
  • 75
  • 28
  • 22
  • 20
  • 11
  • 9
  • 7
  • 6
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 1155
  • 269
  • 187
  • 150
  • 121
  • 115
  • 111
  • 103
  • 96
  • 87
  • 85
  • 85
  • 79
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Studying Neuronal Connectivity in the Mouse Brain in Normal Condition and Fragile X Syndrome / Neuronale connectivité dans le cerveau de souris en condition normale et en syndrome du X fragile

Haberl, Matthias 16 October 2014 (has links)
Le but de ce travail est l'étude de la connectivité anatomique et fonctionnelle desréseaux neuronaux et le développement des nouveaux outils à cet effet. Car le dernieraspect est une préoccupation majeure de la neuroscience actuelle, nous avonsdeveloppé d'abord un nouveau traceur virale permettant la reconstruction neuronale.Nous avons ensuite appliqué cet et d'autres techniques pour sonder les défauts deconnectivité neuronale dans le syndrome de l'X fragile.Dans la première partie, nous avons discuté les avantages et inconvénients d'unetechnique émergente en utilisant un nouveau type de vecteur viral qui permet uneunique application pour l’étude du cerveau.Dans la deuxième partie, nous avons développé, au départ de ce vecteur viral, unenouvelle variante de faciliter le traçage et reconstruction des caractéristiquesmorphologiques de neurones. Nous avons montré la force de cette varianteantérograde du virus de la rage recombinant glycoprotéine supprimé pour lareconstruction de calcul de toutes les caractéristiques morphologiques clés deneurones: les dendrites, épines, les axones longs envergure dans tous les terminaux ducerveau et les boutons.Dans la troisième partie, nous avons examiné les modifications dans la connectivitédes structures cérébrales dans le syndrome du X fragile (FXS). FXS est le retardmental héréditaire la plus fréquente et la forme génétique la plus fréquente del'autisme, ce qui conduit à l'apprentissage et de la mémoire des déficits, lescomportements répétitifs, des convulsions et une hypersensibilité à des stimulisensoriels (visuels). Une des hypothèses éminents dans le domaine de l'autismesuppose une phénotype de hyper-connectivité locale mais de hypo-connectivité pourles connexions longue portée. Pour tester cette hypothèse dans un modèle de sourisFXS nous avons utilisé l'imagerie par résonance magnétique, pour balayer la totalitédu cerveau et de mesurer la connectivité anatomique et fonctionnel. Cela nous apermis d'identifier des altérations de connectivité dans plusieurs domains. Après nous8avons utilisé des traceurs viraux pour explorer un de ceux domains plus detaillé. Enutilisant le virus de la rage rétrograde à quantifier le nombre de neurones projetantvers ces zones, nous avons confirmé une connectivité d'entrée modifié pour le cortexvisuel primaire, ce qui pourrait contribuer au traitement visuel altéré de l'information.Nous avons découvert une connectivité réduite à longue portée globale anatomique etfonctionnelle entre plusieurs régions du cerveau, l'identification FXS comme unepathologie de la connectivité neuronale, ce qui pourrait expliquer les difficultés deplusieurs stratégies de sauvetage visant des cibles moléculaires sont actuellementconfrontés. / The goal of this work was the investigation of the anatomical and functionalconnectivity of neuronal networks and the development of novel tools for thispurpose. Since the latter aspect is a major focus of current neuroscience, we firstsought a novel viral tracer enabling sparse neuronal reconstruction and neuronclassification. We then applied this and other techniques to probe neuronalconnectivity defects in Fragile X Syndrome.In the first part we discussed the merits and drawbacks of a emergingtechnique using a new type of viral vector that allows in a unique manner mapping ofthe input of a given brain area.In the second part we developed, departing from this viral vector, a newvariant to facilitate the tracing and reconstructing of morphologic features of neurons.We showed the strength of this anterograde variant of the recombinant glycoproteindeletedrabies virus for computational reconstruction of all key morphologicalfeatures of neurons: dendrites, spines, long-ranging axons throughout the brain andbouton terminals.In the third part we examined alterations in the wiring of brain structures inthe Fragile X Syndrome (FXS). FXS is the most common inherited mental retardationand most frequent genetic form of autism, leading to learning and memory deficits,repetitive behavior, seizures and hypersensitivity to sensory (e.g. visual) stimuli. Oneof the eminent hypotheses in the autism field assumes a local hyper- connectivityphenotype but hypo-connectivity for long-ranging connections. To test this hypothesisin a FXS mouse model we used magnetic resonance imaging, to scan the entire brainand measure the anatomical and functional connectivity. This allowed us to identifyconnectivity alterations in several areas that we further explored using viral tracers.Using retrograde rabies virus to count the number of neurons projecting to such areaswe confirmed an altered input connectivity to the primary visual cortex, which couldcontribute to the altered visual information processing. We discovered an overallreduced anatomical and functional long-range connectivity between several brainareas, identifying FXS as pathology of neuronal connectivity, which might explain thedifficulties several rescue strategies aiming at molecular targets are currently facing.
452

Topology Control in Wireless Sensor Networks

Wightman Rojas, Pedro Mario 12 February 2010 (has links)
Wireless Sensor Networks (WSN) offer a flexible low-cost solution to the problem of event monitoring, especially in places with limited accessibility or that represent danger to humans. WSNs are made of resource-constrained wireless devices, which require energy efficient mechanisms, algorithms and protocols. One of these mechanisms is Topology Control (TC) composed of two mechanisms, Topology Construction and Topology Maintenance. This dissertation expands the knowledge of TC in many ways. First, it introduces a comprehensive taxonomy for topology construction and maintenance algorithms for the first time. Second, it includes four new topology construction protocols: A3, A3Lite, A3Cov and A3LiteCov. These protocols reduce the number of active nodes by building a Connected Dominating Set (CDS) and then turning off unnecessary nodes. The A3 and A3-Lite protocols guarantee a connected reduced structure in a very energy efficient manner. The A3Cov and A3LiteCov protocols are extensions of their predecessors that increase the sensing coverage of the network. All these protocols are distributed -they do not require localization information, and present low message and computational complexity. Third, this dissertation also includes and evaluates the performance of four topology maintenance protocols: Recreation (DGTRec), Rotation (SGTRot), Rotation and Recreation (HGTRotRec), and Dynamic Local-DSR (DLDSR). Finally, an event-driven simulation tool named Atarraya was developed for teaching, researching and evaluating topology control protocols, which fills a need in the area of topology control that other simulators cannot. Atarraya was used to implement all the topology construction and maintenance cited, and to evaluate their performance. The results show that A3Lite produces a similar number of active nodes when compared to A3, while spending less energy due to its lower message complexity. A3Cov and A3CovLite show better or similar coverage than the other distributed protocols discussed here, while preserving the connectivity and energy efficiency from A3 and A3Lite. In terms of network lifetime, depending on the scenarios, it is shown that there can be a substantial increase in the network lifetime of 450% when a topology construction method is applied, and of 3200% when both topology construction and maintenance are applied, compared to the case where no topology control is used.
453

Effets de la stimulation magnétique transcrânienne sur le cerveau : études en imagerie fonctionnelle et spectroscopique chez des patients souffrant de schizophrénie / Effects of transcranial magnetic stimulation on brain : studies in functional magnetic resonance imaging and brain proton magnetic resonance spectroscopy in patients with schizophrenia

Briend, Frédéric 13 November 2017 (has links)
La compréhension des effets cérébraux sous-tendant l’impact de la stimulation magnétique transcrânienne répétée (rTMS) est un a priori nécessaire à la connaissance de la prise en charge thérapeutique des patients bénéficiant de ces traitements. A posteriori, elle permet en plus de comprendre les processus physiopathologiques responsables des symptômes cliniques propres aux troubles mentaux. Nous nous sommes ici intéressés aux effets de la rTMS sur le cerveau des patients souffrant de schizophrénie (SZ), au travers des deux principes fondamentaux du fonctionnement cérébral que sont la ségrégation et l’intégration fonctionnelle. En premier lieu, nous avons analysé l’effet de la rTMS visant le cortex préfrontal médian (CPM) sur le principe de ségrégation fonctionnelle chez des SZ avec trouble de la cognition sociale. Pour ce faire nous avons développé un paradigme d’imagerie par résonance magnétique fonctionnelle (IRMf) écologique et novateur de cognition sociale. Un prérequis aux études longitudinales en IRMf est la reproductibilité du signal d’activation. Nous avons alors démontré la fiabilité de notre paradigme entre deux sessions, puis à l’aide de ce paradigme, nous avons étudié l’effet de la rTMS sur la ségrégation à partir de la variation du signal BOLD et des taux de N-AcetylAspartate et de glutamate. Puis nous avons étudié l’impact de la rTMS ciblant le sillon temporal supérieur gauche (STSg) sur les hallucinations auditivo-verbales (AVH) en termes de connectivité fonctionnelle statique (intégration fonctionnelle). Nous avons ainsi mis en évidence l’effet bénéfique de la rTMS sur le trouble de cognition sociale et sur les AVH. En outre, quand la rTMS cible le STSg, il ne semble pas avoir d’effet sur la connectivité fonctionnelle statique du réseau cérébral du langage observé. Cependant, focalisé au niveau du CPM, elle permettrait d’augmenter la concentration de N-acétylaspartate des SZ. L’absence d’effet de la rTMS illustrerait plutôt des profils d’organisation cérébrale différents des SZ, et ce par des variabilités interindividuelles, suggérant qu’il serait à l’avenir bénéfique de déterminer les caractéristiques optimales de la stimulation sur une base individuelle afin de mieux moduler les processus anormaux du cerveau dans les schizophrénies. / The understanding of the brain effects underlying the impact of repeated transcranial magnetic stimulation (rTMS) is a necessary a priori necessary concerning patients treatments. A posteriori, it also helps to understand the pathophysiological processes responsible for the clinical symptoms of mental disorders. Hither, we are interested in the effects of rTMS on the brain of patients with schizophrenia (SZ), through the two fundamental principles of cerebral functioning: segregation and functional integration. First, we have analyzed the effect of rTMS on the medial prefrontal cortex (MPFC) according to functional segregation in SZ with social cognition disorder. To do this we have developed an ecological and innovative social cognition paradigm for functional magnetic resonance imaging (fMRI). A prerequisite for longitudinal studies in fMRI is the reproducibility of the activation signal, we have then demonstrated the reliability of our paradigm between two sessions. Using this paradigm, we have studied the effect of rTMS on segregation from the variation of the BOLD signal and the levels of N-Acetyl Aspartate and glutamate. Then, we studied the impact of rTMS targeting the left temporal sulcus (STS) on auditory-verbal hallucinations (AVH) in terms of functional connectivity (functional integration). We have thus demonstrated the beneficial effect of rTMS on social cognition disorder and on AVH. Moreover, when the rTMS targets the STS, it does not seem to have an effect on the static functional connectivity within the listening language network. However, focused on the MPFC, it would increase the N-acetylaspartate concentration of SZ. The absence of the effect of the rTMS would rather illustrate different brain organization patterns of the SZ, due to inter-individual variability, suggesting that it would be in the future beneficial to determine optimal characteristics of stimulation on an individual basis in order to best modulate abnormal processes of the brain in schizophrenias.
454

Identifying Changes of Functional Brain Networks using Graph Theory

Schäfer, Alexander 26 March 2015 (has links)
This thesis gives an overview on how to estimate changes in functional brain networks using graph theoretical measures. It explains the assessment and definition of functional brain networks derived from fMRI data. More explicitly, this thesis provides examples and newly developed methods on the measurement and visualization of changes due to pathology, external electrical stimulation or ongoing internal thought processes. These changes can occur on long as well as on short time scales and might be a key to understanding brain pathologies and their development. Furthermore, this thesis describes new methods to investigate and visualize these changes on both time scales and provides a more complete picture of the brain as a dynamic and constantly changing network.:1 Introduction 1.1 General Introduction 1.2 Functional Magnetic Resonance Imaging 1.3 Resting-state fMRI 1.4 Brain Networks and Graph Theory 1.5 White-Matter Lesions and Small Vessel Disease 1.6 Transcranial Direct Current Stimulation 1.7 Dynamic Functional Connectivity 2 Publications 2.1 Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity 2.2 Early small vessel disease affects fronto-parietal and cerebellar hubs in close correlation with clinical symptoms - A resting-state fMRI study 2.3 Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation 2.4 Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain 2.5 Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI 3 Summary 4 Bibliography 5. Appendix 5.1 Erklärung über die eigenständige Abfassung der Arbeit 5.2 Curriculum vitae 5.3 Publications 5.4 Acknowledgements
455

Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Karri, Venkata Praveen 08 1900 (has links)
Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. Previous methods and software solutions to detect informative frames in a colonoscopy video (a process called informative frame filtering or IFF) have been hugely ineffective in (1) covering the proper definition of an informative frame in the broadest sense and (2) striking an optimal balance between accuracy and speed of classification in both real-time and non real-time medical procedures. In my thesis, I propose a more effective method and faster software solutions for IFF which is more effective due to the introduction of a heuristic algorithm (derived from experimental analysis of typical colon features) for classification. It contributed to a 5-10% boost in various performance metrics for IFF. The software modules are faster due to the incorporation of sophisticated parallel-processing oriented coding techniques on modern microprocessors. Two IFF modules were created, one for post-procedure and the other for real-time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-threading concepts embedded in two significant microprocessor design philosophies (multi-core design and many-core design) resulted a 5-fold acceleration for the post-procedure module and a 40-fold acceleration for the real-time module. Some innovative software modules, which are still in testing phase, have been recently created to exploit the power of multiple GPUs together.
456

Evaluating Tangent Spaces, Distances, and Deep Learning Models to Develop Classifiers for Brain Connectivity Data

Michael Siyuan Wang (9193706) 03 August 2020 (has links)
A better, more optimized processing pipeline for functional connectivity (FC) data will likely accelerate practical advances within the field of neuroimaging. When using correlation-based measures of FC, researchers have recently employed a few data-driven methods to maximize its predictive power. In this study, we apply a few of these post-processing methods in both task, twin, and subject identification problems. First, we employ PCA reconstruction of the original dataset, which has been successfully used to maximize subject-level identifiability. We show there is dataset-dependent optimal PCA reconstruction for task and twin identification. Next, we analyze FCs in their native geometry using tangent space projection with various mean covariance reference matrices. We demonstrate that the tangent projection of the original FCs can drastically increase subject and twin identification rates. For example, the identification rate of 106 MZ twin pairs increased from 0.487 of the original FCs to 0.943 after tangent projection with the logarithmic Euclidean reference matrix. We also use Schaefer’s variable parcellation sizes to show that increasing parcellation granularity in general increases twin and subject identification rates. Finally, we show that our custom convolutional neural network classifier achieves an average task identification rate of 0.986, surpassing state-of-the-art results. These post-processing methods are promising for future research in functional connectome predictive modeling and, if optimized further, can likely be extended into clinical applications.
457

Nature Connectivity in Young Adults: Relationships Between Well-Being, Technology, and the Natural Environment

Peavler, Cheyenne, Polaha, Jodi 01 March 2011 (has links)
Past research has demonstrated that people who engage in more frequent contact with nature report higher levels of well-being. However, apathy towards environmental issues has been detected in national samples of adolescents in research spanning over three decades. Previous studies have provided evidence of the relationship between nature relatedness and well-being , but have not fully explored types of factors which contribute to the enhancement of nature connectivity. This study attempts to examine various dimensions of nature connectivity and well-being. Participants were 846 college students between the ages of 18 and 30.Participants responded to an online survey which analyzed environmental attitudes oriented towards environmental concern, pro-environmental behaviors, knowledge of sustainability, nature relatedness, level of technology use, attitudes towards technology, and well-being. Correlations between these variables were examined to determine if the presence or absence of each factor is related to an individual’s relationship with the natural environment. Results were consistent with past research with correlations between nature relatedness and life satisfaction at .082 and between nature relatedness and hopelessness at -.090. These were significant at the .05 and .01 levels, respectively. Pro-environmental behaviors were negatively correlated with technology use and technology attitudes with technology use at -.125 and technology attitudes at -.131. Both were significant at the .01 level. Nature relatedness was positively correlated with pro-environmental behaviors, sustainability knowledge, and positive environmental attitudes at .526, .311, and .510, respectively. These were significant at the .01 level.
458

Globální města v systému letecké dopravy / Global cities in the air transport system

Hampl, Pavel January 2010 (has links)
The diploma thesis "Global cities in the air transport system" is focused on the importance of global cities for the international airline network. The first chapter defines significant clasification of the global cities and subsequently, the operational ranking is created based on the three selected rankings of global cities. Second chapter is dedicated to the system of air transport and also defines the main air transport hubs in particular world regions. Following chapter analyses transportation outputs of the airports of global cities and its growth in years 2004 - 2008 based on the economic level of each state. It also identifies factors that have the highest influence on the air transport outputs within the frame of global cities. In last chapter, the selected global cities are ranked by their connectivity within airline network based on the results of analysis of airline connectivity of global cities. In the conclusions the importance of the global cities for international airline network is summarised.
459

Spatial determinants of habitat use, mortality and connectivity for elephant populations across southern Africa

Roever, Carrie Lynn 13 February 2013 (has links)
Southern Africa contains 58% of the world’s savannah elephant population, yet 72% of their range occurs outside of protected areas. It is, therefore, important to develop management guidelines that satisfy the needs of both elephants and people while maintaining environmental heterogeneity and ecosystem processes. Managing elephants as a metapopulation may provide the solution. The goal of this thesis was then to use a habitat-based approach to identify landscape characteristics which could contribute to the functionality of a metapopulation for elephants. Using resource selection function models, I identified habitat suitability for elephants across southern Africa and used these models to evaluate whether current habitat configurations allow for the assumptions of connectivity and asynchronous population dynamics required by a metapopulation. I found that water, tree cover, slope, and human presence were important predictors of elephant habitat selection. Furthermore, functional responses in habitat selection were present across space and time for water and tree cover, showing the adaptability of this generalist species to resource heterogeneity. Using habitat selection along with circuit theory current flow maps, I then found a high likelihood of connectivity in the central portion of our study area (i.e. between the Chobe, Kafue, Luangwa, and Zambezi cluster). Main factors limiting connectivity were the high human density in the east and a lack of surface water in the west. These factors effectively isolate elephants in the Etosha cluster in Namibia and Niassa clusters in Mozambique from the central region. Models further identified two clusters where elephants might benefit from being managed as part of a conservation network, 1) northern Zambia and Malawi and 2) northern Mozambique. Incorporating information on elephant mortalities in northern Botswana into habitat selection estimations, I found that source habitats for elephants occurred within the central Okavango Delta region and sink habitats were associated with periphery of the study area where human use was highest. Eighty percent of elephant mortalities occurred within 25 km of people. The protected designation of an area had less influence on elephant mortality than did the locations of the area in relation to human development. To exacerbate human-elephant conflicts, people tended to settle in areas of high-quality elephant habitats, creating resource competition between elephants and people. Consequently, elephant mortality near humans increased as a function of habitat suitability, and elephants responded by using less suitable habitats. While humans occupied only 0.7% of the study area, mortality and behavioural effects impacted 43%. Based on the habitat factors examined here, elephants in southern Africa could be managed as a metapopulation if (1) connectivity is maintained and encouraged and (2) spatial heterogeneity in resources and risks serves to stabilize elephant demography. This habitat-based system of management could serve to alleviate unstable elephant populations in southern Africa and create more natural, self-sustaining regulatory mechanisms. / Thesis (PhD)--University of Pretoria, 2013. / Zoology and Entomology / unrestricted
460

Mapping Connectivity in the Swedish Agricultural Landscape

Franzén, William January 2020 (has links)
The changes that Swedish agriculture has undergone during the 20th century has resulted in strongly increased productivity, but at the cost of more intensive environmental impacts. One of these is loss of biodiversity, which is driven by, e.g., usage of pesticides and loss and fragmentation of habitats. A vital process for resilient ecosystems is the possibility for species to move between habitats, known as connectivity. One approach to increase connectivity is through strategic perennialization in the agricultural landscape. The aim of this thesis is to map structural connectivity in agricultural landscapes in two major agricultural regions in Sweden and explore options for enhancing connectivity by strategic perennialization. Objectives include the development of a model to map structural connectivity in the Swedish agricultural landscape, identify landscapes where conditions for biodiversity can be improved by strengthening the structural connectivity, and investigate the potential to improve the conditions for biodiversity by introducing perennial crops in the agricultural landscape. The resulting model is based on circuit theory using the software Circuitscape, in which land cover is treated as electric circuits, which are assigned resistance based on the permeability of different types of land cover. The resistance in the developed model is based partly on human impact and partly on structural differences from areas of high biological values, or value cores, between which connectivity is modelled, in terms of object height- and cover. Two agricultural production areas were investigated, Skåne plains and Västra Götaland plains, as well as a testing area in Skåne county. Connectivity maps were created and analysed, and potential areas for strategic perennialization were identified. A strategic perennialization scenario was also modelled in the testing area. Since the application of the model is structural connectivity, uncertainties regarding how well it relates to functional connectivity varies between species. Structural connectivity has nonetheless been shown to facilitate functional connectivity in several aspects. No significant difference in connectivity could be found in the trial area following the introduction of strategic perennialization, but this is most likely due to assumptions behind area selection. Therefore, other approaches for identifying promising locations for strategic perennialization, based on connectivity maps, need to be explored. / <p>2020-06-13</p>

Page generated in 0.0901 seconds