• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zu Grad, Konfiguration und Verlauf der Schallempfindungsschwerhörigkeit bei Kindern mit einer Connexin-26-Mutation / The level, configuration and progression of the sensorineural hearing loss of children with Connexin-26-mutation

Al-Hazza, Aseel January 2017 (has links) (PDF)
Verschiedene Forschungsergebnisse der letzten zehn Jahre ergaben, dass die weitaus häufigeren, nicht-syndromalen Schwerhörigkeiten durch Mutation eines Gens (GJB2-Gen) entstehen, welches im Cortischen Organ des Innenohrs exprimiert wird. Das GJB2-Gen (Connexin-26-Gen), dessen Veränderung etwa 50 % der Fälle von autosomal rezessiver Schwerhörigkeit ausmacht, liegt im Chromosomenbereich 13q11–12. Aktuell identifiziert sind mehr als 70 weitere Loki, die in Verbindung mit nicht-syndromalen Formen von Schwerhörigkeit stehen. Die Prävalenz von NSHL beträgt nach neusten Studien ca. 1,33 pro 1000 Neugeborenen. In Würzburg wurden bis zum Jahr 2011 auf der Neugeborenenstation der Frauenklinik der Universitätsklinik in einem bewährten zweistufigen Neugeborenen-Hörscreening ca. 12853 Babys untersucht. Ziel des Neugeborenen-Hörscreenings ist eine frühestmögliche Erkennung von Schwerhörigkeit bei Neugeborenen, damit durch die Behandlung eine ungehinderte Sprachentwicklung gewährleistet werden kann. In dieser Arbeit wurde der Zusammenhang zwischen der Mutation im Connexin-26-Gen und dem Grad, dem Verlauf und der Konfiguration der Hörminderung untersucht. Hierfür wurden 59 Patienten im Alter von 1 bis 15 Jahren mit beidseitigen, nicht-syndromalen Hörstörungen der Schallempfindung verschiedenen Grades rekrutiert. Mithilfe der molekulargenetischen Befunde konnten Veränderungen im Connexin-26-Gen diagnostiziert werden. Anschließend wurde versucht, unter Zuhilfenahme aller vorhandenen Befunde der individuellen Audiogramm- und BERA- oder ASSR-Befunde eine Genotyp-Phänotyp-Korrelation abzuleiten. / Different research studies in the last ten years resulted, that the more frequently and non-syndromal hearing loss result of mutation in the gene (GJB2-Gen), witch express in cortical organ the inner ear. The GJB2-Gen (Connexin-26-Gen) plays a decisive role in the 50% the autosomal recessive cases of hearing loss and it is localized on chromosome 13q11–12. Up to now there are more than 70 Loci identified, witch also connected with the non-syndromal hearing loss. The prevalence of NSHL amounts according to the newest studies about 1,33 per 1000 newborn. Until 2011, about 12853 babies have been examined at the neonatal ward of the gynecological university hospital in Würzburg in a proven two-stage newborn hearing screening. Goal of the screening was, to detect deafness in neonates as early as possible. Consequently, unhindered language development throughout the treatment can be assured . In this thesis, the relation between mutation in connexin-26 gene and the degree, course and configuration of hearing loss was investigated. For this purpose, 59 patients aged 1 to 15 years with bilateral, non-syndromic hearing loss of a variety acoustic perception form, were gathered. Using molecular genetic examenation methods, changes of the connexin-26 gene were diagnosed. Subsequently, by analyzing all available findings of individual audiogram and BERA or ASSR, a genotype-phenotype correlation was established.
2

SURVEY OF NEWBORN HEARING SCREENING AND GENETIC TESTING PRACTICES IN STATES AND HOSPITALS IN THE UNITED STATES

PITTS, STACIE A. 14 July 2005 (has links)
No description available.
3

Expressão de conexinas em células-tronco da polpa dentária / Expression of conexins in stem cells from dental pulp

Cruz, Dayane Bernardino da 20 September 2016 (has links)
Mais de 200 mutações patogênicas já foram descritas no gene que codifica a Cx26 (GJB2) que levam à surdez hereditária. A mais frequente destas mutações é a c.35delG. Ela é a principal causa de surdez não sindrômica com padrão de herança autossômico recessivo na população brasileira e em diversas populações do mundo. O genoma humano contém 21 diferentes genes de proteínas da família das conexinas que são expressos em diversos tecidos. Os canais comunicantes e hemicanais formados por conexinas facilitam a passagem de pequenos metabólitos entre as células adjacentes e entre a célula e o meio extracelular, promovendo a homeostasia celular. Este estudo teve o objetivo de avaliar os efeitos da mutação c.35delG em homozigose no gene GJB2 em SHEDs sobre a diferenciação celular e sobre a expressão das Cx26 (GJB2), Cx30 (GJB6), Cx31 (GJB3), Cx43 (GJA1) e Cx50 (GJA8) em SHEDs (Stem cells from human exfoliated deciduous teeth). Para isso, obtivemos linhagens de SHEDs a partir de 3 indivíduos portadores da mutação c.35delG em homozigose e de 3 indivíduos controle, sem a mutação. Nossos resultados indicaram que SHEDs portadoras da mutação apresentam maiores taxas de diferenciação em adipócitos e em osteócitos do que SHEDs de indivíduos controle. Por meio de RT-PCR, RT-PCR quantitativa e citometria de fluxo identificamos a expressão dos genes GJB2 (Cx26), GJB6 (Cx30) e GJA1 (Cx43) e suas respectivas proteínas, tanto em SHEDs dos indivíduos com a mutação como em SHEDs de indivíduos controle. Não há expressão dos genes GJA8 (Cx50) e GJB3 (Cx31) e suas respectivas proteínas em SHEDs. Por meio de RT-PCR quantitativa observamos aumento dos níveis de expressão do RNAm de GJA1 e redução de RNAm de GJB2 em SHEDs oriundas de pacientes com c.35delG, quando comparadas às de amostras controle. Resultados obtidos por meio de Western Blotting mostraram aumento de aproximadamente 50% na expressão da Cx43 corroborando os resultados obtidos por meio de RT-PCR quantitativo. Detectamos que a expressão da Cx26 em células de indivíduos com mutação é 50% menor do que em células de indivíduos controle. Os aumentos observados das taxas de diferenciação em adipócitos e em osteócitos podem estar relacionados ao aumento da expressão da Cx43. Sabe-se que a Cx43 possui importante papel na manutenção de pré-adipócitos durante a fase de expansão clonal na adipogênese. A Cx43 também está relacionada à sinalização celular nas vias de proliferação e diferenciação durante a osteogênese. Indivíduos portadores da mutação c.35delG apresentam surdez sem outros fenótipos associados sugerem que ocorra redundância funcional entre as conexinas. Além disso, o aumento da expressão de GJA1 (Cx43) nas SHEDs oriundas dos indivíduos surdos com a mutação c.35delG falam a favor da existência de um mecanismo de regulação compensatório a ser esclarecido, que aumenta a síntese de Cx43 na redução ou ausência da Cx26 funcional / More than 200 patogenic mutations in the connexin 26 gene (GJB2) were associated to deafness. The most frequent is the c.35delG mutation, which is the most common cause of nonsydromic recessive hearing loss in the Brazilian population, and also in several populations in the world. The human genome contains 21 genes that comprise the gene family of the connexins, expressed in many different tissues. Connexins are components of gap junctions and hemichannels, which facilitate the transference of small metabolites between cells and between cells and the extracelular medium. The aim of this study was to investigate the effects of the c.35delG mutation on adipogenesis, chondrogenesis and osteogenesis, and also its effects on mRNA and protein expression related to Cx26 (GJB2), Cx30(GJB6), Cx31 (GJB3), Cx43 (GJA1) and Cx50 (GJA8) in SHEDs (stem cells from human exfoliated deciduous teeth). For this purpose, 3 SHED lines from patients with c.35delG mutation in homozygosis and 3 lines from individuals without mutation were established. We observed that the rates of induced differentiation into adipocytes and osteocytes were higher in SHEDs from individuals with the c.35delG mutation than in SHEDs from control individuals. By RT-PCR, real time RT-PCR and flow cytometry were detected the expression of GJB2, GJB6 and GJA1 genes and their respective proteins Cx26, Cx30 and Cx43 in SHEDs from control samples and in SHEDs with the mutation. The expression of GJA8 (Cx50) and of GJB3 (Cx31) were not detected in SHEDS from both groups. Quantitative gene expression analysis using real-time RT-PCR revealed significantly elevated levels of GJA1 mRNA expression and decreased GJB2 mRNA expression in cells from patients with c.35delG, when compared to cells from normal controls. Western Blotting analysis showed an increase of about of 50% of the protein Cx43 in cells with c.35delG mutation, in comparison to cells from normal controls, in accordance with the real-time RT-PCR results. We detected that Cx26 protein expression in samples with c.35delG mutation is approximately 50% lower than in SHEDs from normal controls. The observed increase in differentiation rates related to adipogenesis and osteogenesis may be explained by the higher levels of Cx43 expression. This is supported by the fact that Cx43 was reported to play an important role in the maintenance of pre-adipocytes during clonal expansion and it was also related to cell signaling pathways in proliferation and differentiation during osteogenesis. Individuals with c.35delG in homozygosis present only deafness, without other symptoms, which suggests that functional redundancy between connexins may exist. The increase of Cx43 expression in SHEDs from deaf patients with c.35delG mutation found by us may be related to a compensation mechanism to be clarified, which results in increase of the production of Cx43 when functional connexin Cx26 is reduced or absent
4

A conexina 26 e sua relação com outras proteínas no órgão de Corti / The connexin 26 and its relationship with other proteins from the organ of Corti

Batissoco, Ana Carla 04 November 2011 (has links)
A causa mais frequente de surdez de herança autossômica recessiva são as mutações no lócus DFNB1, onde estão os genes GJB2 e GJB6. Dentre os indivíduos com deficiência auditiva associada a esse lócus, 10% a 50% apresentam uma única mutação recessiva no gene GJB2, frequência muito superior à esperada em função da frequência de heterozigotos na população geral. Apesar de alguns desses casos terem sido elucidados após a identificação de grandes deleções no gene GJB6 ou nas suas proximidades, a existência de muitos indivíduos com uma única mutação patogênica no gene GJB2 sugere que a haplo-insuficiência nesse gene possa interagir com outras mutações no mesmo gene, no gene GJB6 vizinho, ou até em outros genes. O objetivo desse estudo foi identificar novos alelos patogênicos, novas proteínas e novos genes que interagem com o lócus DFNB1, do ponto de vista molecular e celular, e que possam ser responsáveis por surdez de herança autossômica recessiva. Desse modo, pretendemos contribuir para o esclarecimento da patogênese da surdez de herança autossômica recessiva. Nesse trabalho, três tipos de estudos foram realizados, com metodologias próprias. Na primeira parte, buscamos identificar novos alelos patogênicos no lócus DFNB1 que poderiam ser responsáveis por surdez quando presentes em heterozigose composta com outros alelos patogênicos nos genes GJB2 e GJB6. Foi realizada a análise do DNA de 16 pacientes surdos portadores de uma única mutação patogênica em um desses dois genes por meio: (i) do sequenciamento das regiões codificadora, promotora e doadora de splicing (intron 1) do gene GJB2, (ii) da triagem de uma deleção de 200 kb localizada a 130 kb da proximidade distal da região 5\' do gene GJB6 e (iii) da pesquisa de variações no número de cópias de um ou mais exons dos genes GJB2, GJB6, GJB3 e WFS1 por MLPA (Multiplex Ligation-dependent Probe Amplification). Detectamos uma segunda mutação provavelmente patogênica em dois dos 16 pacientes heterozigotos: em um deles, a mutação p.L76P (c.C227T) foi identificada na região de código do gene GJB2 e foi por nós descrita pela primeira vez; no segundo caso, uma duplicação (0,4-1,2Kb) que inclui a região de código do gene GJB2 foi detectada, também inédita na literatura. Na segunda parte, tivemos como objetivo obter um modelo experimental para estudos funcionais in vitro da proteína codificada pelo gene GJB2, a conexina 26, em seu local de expressão que são as células de suporte do órgão de Corti. Padronizamos o cultivo in vitro de células progenitoras do órgão de Corti de camundongos e de cobaias e conseguimos obter a diferenciação in vitro das otoesferas dos camundongos em células que expressam marcadores de células ciliadas (Miosina VIIa e Jagged2) e de células de suporte (p27kip e Jagged1). Por fim, na terceira parte, buscamos por proteínas que interagem com a conexina 26 por meio de ensaios de precipitação por afinidade. Para isso, produzimos clones recombinantes de uma proteína de fusão GST-Cx26 e de uma proteína controle (GST), e realizamos sua expressão in vitro em bactérias E.coli B21. Ensaios de precipitação por afinidade entre a proteína de fusão GST-Cx26 ou GST sozinha e proteínas extraídas de cérebro ou fígado de camundongos foram realizados em diferentes condições. A identificação e a análise das proteínas presentes em bandas de SDS-PAGE, obtidas no ensaio de precipitação com a proteína de fusão GST-Cx26 e ausentes no ensaio com a GST, foram realizadas por espectrometria de massas. Identificamos um total de 49 proteínas candidatas a interagirem com a região C-terminal da Cx26. Realizamos diversas análises in silico e em literatura específica e após exclusão de candidatas por: (i) redundância de representação no ensaio GST-Cx26, (ii) diferença entre a massa molecular esperada e a obtida, (iii) precipitação inespecífica e (iv) localização subcelular incompatível com a conexina 26, selecionamos um total de 22 proteínas candidatas a interagirem com a região C-terminal da conexina 26, para estudos futuros. A confimação da interação entre essas 22 proteínas e a conexina 26 é desejável por meio de estudos de co-localização e imuno-coprecipitação / The most frequent causes of nonsyndromic recessive hearing loss are mutations in locus DFNB1, in the GJB2 and GJB6 genes. Among the individuals with hearing loss with mutations in this locus, 10% to 50% present a single recessive mutation in the GJB2 gene, frequency much higher than expected taking into account the frequency of heterozygotes in the general population. Although some of these cases have been elucidated after the identification of large deletions in GJB6 or its surrounding regions, the existence of many individuals with a single pathogenic mutation in the GJB2 gene suggests that haplo-insufficiency of this gene may interact with other types of mutations in the same gene, in the neighbor gene GJB6, or even in other genes. The aim of this study was to identify new pathogenic alleles, proteins and genes that interact with the locus DFNB1, from the molecular and cellular perspective, and that may be responsible for autosomal recessive deafness. Thus, we aimed to contribute to the understanding of the pathogenesis of autosomal recessive deafness. In this work, three different types of studies were performed, each one with a particular methodology. In the first part, we searched for new pathogenic alleles in the locus DFNB1 that could be responsible for deafness, when present in compound heterozygosis with other pathogenic alleles in GJB2 and GJB6 genes. We performed DNA analysis in samples from 16 deaf patients, carriers of a single pathogenic mutation in one of these two genes by: (i) sequencing the coding, promoter and splice donor (intron 1) regions of the GJB2 gene, (ii) screening for a deletion of 200 kb located 130 kb upstream from GJB6 gene and (iii) investigating copy number variations in of one or more exons of the genes GJB2, GJB6, GJB3 and WFS1 by MLPA (Multiplex Ligation-dependent Probe Amplification). We detected a second mutation, probably pathogenic, in two of the 16 heterozygous patients: in one case, the p.L76P (c.C227T) mutation was identified in the coding region of the GJB2 gene and was firstly described by us; in the second case, a novel duplication (0.4 - 1.2 Mb) that includes the coding region of the GJB2 gene was detected. In the second part, our objective was to obtain an experimental model for in vitro functional studies of the protein encoded by the GJB2 gene, connexin 26, in its site of expression, that is, in the supporting cells of the organ of Corti. We standardized the culturing of guinea pigs and mice progenitor cells of organ of Corti. We were also able to induce differentiation of mice\'s otospheres into cells that express markers of hair (myosin VIIa and Jagged2) and supporting cells (p27kip and Jagged1). Finally, we searched for connexin 26 interacting proteins by pull-down assays. Recombinant clones expressing a fusion protein GST-Cx26 and a control protein (GST) were produced, so that in vitro expression in E. coli B21 could be performed. Pull-down experiments, perfomed with fusion protein GST-Cx26 or GST alone, and with proteins from mice brain or liver extracts were done under several different conditions. The identification and analysis of proteins present in SDS-PAGE bands in experiments performed with the fusion protein GST-Cx26, and absent in the GST assay, were performed by mass spectrometry. We identified a total of 49 candidate proteins for interaction with the C-terminal region of Cx26. In silico analyses performed in several databases and search in the literature allowed exclusion of candidates by: (i) redundancy of representation in the GST-Cx26 experiments; (ii) discrepancy between the expected and the obtained molecular weight; (iii) nonspecific precipitation and (iv) subcellular localization incompatible with connexin 26 localization. Summing up, we selected a total of 22 candidate proteins to interact with the C-terminal region of connexin 26. Confirmation of the interaction between these proteins and connexin 26 is planned to be performed by co-localization studies and by immuno-coprecipitation
5

Connexine als potenzielle Biomarker für den Progress oraler Plattenepithelkarzinome: Analyse der Expressionsmuster von Connexin 26, 43 und 45 und ihres Einflusses auf das Überleben / Connexins as potential biomarkers for the progression of oral squamous cell carcinoma: analysis of the expression pattern of connexin 26, 43 and 45 and their influence on survival

Brockmeyer, Phillipp 02 July 2014 (has links)
No description available.
6

Genetic aspects of hearing loss in the Limpopo Province of South Africa.

Kabahuma, Rosemary I. 27 August 2010 (has links)
The aetiological diagnosis of recessive non-syndromic hearing loss poses a challenge owing to marked heterogeneity and the lack of identifying clinical features. The finding that up to 50% of recessive non-syndromal genetic hearing loss among Caucasians was due to mutations in GJB2, the gene encoding Connexin 26 (Cx26) was a breakthrough, whose value as a diagnostic tool has been limited by the significant variation in the prevalence of deafness genes and loci among population groups. The significant association of the GJB6-D13S1830 deletion among individuals with one mutant GJB2 allele highlighted the need to explore population specific genetic mutations for NSHL. Although data from Sub-Saharan Africa is limited, reported studies found a high prevalence of R143W GJB2 mutation among Ghanaian, the 35delG mutation in 5 out of 139 Sudanese and a low prevalence of GJB2 variations among 385 Kenyan deaf children. The mutation spectrum of Waardenburg Syndrome (WS) in Africans has not been documented. During a visit to a School for the Deaf in the Limpopo Province of South Africa in 1997, it was noted that a high number of students came from Nzhelele sub-district. All had childhood onset hearing loss with no associated anomalies or disorders. The question arose as to whether there was a high-risk area for deafness in the Limpopo Province and what the aetiology of this hearing loss was.The main aim of this study was to investigate the role of GJB2, the GJB6-D13S1830 deletion, and the four common mitochondrial mutations, A1555G, A3243G, A7511C and A7445G, in the African hearing-impaired population of Limpopo province in South Africa, and to identify the mutation spectrum of the deafness genes found. The type and degree of hearing loss in this hearing impaired population would also be assessed. Secondly, this study sought to identify the mutations in a sibling pair with 2 clinical WS and to use the findings in a future study to establish the mutation spectrum of WS in the African population of the Limpopo province and of South Africa in general. The study was designed as a two phase study, in which phase 1 was used for hypothesis formulation and phase 2 was for hypothesis testing. While phase 1 was a descriptive retrospective case study, phase 2 was a combination of sample survey and prospective descriptive case study. In phase 1, demographic data of 361 students in two schools of the deaf in the Limpopo province was analyzed for evidence of areas of high risk populations for deafness in the province. In phase 2, a group of 182 individuals with genetic non-syndromic hearing loss (NSHL) and two siblings with clinical WS from two schools for the Deaf in the Limpopo Province of South Africa were investigated. A thorough clinical examination, audiological evaluation and urinalysis were done. Mutational screening was carried out in all 184 subjects using genomic DNA using single-strand conformation polymorphism (SSCP), multiplex polymerase chain reaction (PCR), and direct sequencing for GJB2, and Restriction Fragment-Length Polymorphism (PCR–RFLP) analysis for GJB6, and SSCP, hetero-duplex analysis, and direct sequencing of the first 8 exons of PAX3 and all of MITF for Waarenburg syndrome. Data analysis was by geographical mapping, frequency tables, tests of association with calculation of odds ratios, and binary logistic regression analysis using STATA and GIS mapping systems. The results indicate that there seem to be areas of genuine populations at risk for hearing loss in the Limpopo province of South Africa, namely Mutale and parts of Makhado and Thulamela municipalities. In Thulamela (NP343) wards 11-15, 26-30 and 31-35, and in Mutale (NP 344) wards 6-10, together accounted for 67 (18%) of participants in phase 1, and 33 (18%) of the participants in phase 2 of the study. Mutale municipality in the Vhembe 3 district gave with a projected prevalence of at least 13.14 deaf children per 100,000 African population attending the local school for the deaf. The observed hearing loss is a genetic, non-syndromic form, which is mainly severe and severe to profound, although without any clear defining configuration or shape. It is a stable, non-progressive and prelingual form of hearing loss, implying that this may be a recessive form of deafness. No identifiable environmental confounding factors or associations were identified. The deafness is not linked the common known auditory gene mutations in GJB2, the GJB6-D13S1830 deletion, or the common mitochondrial mutations A1555G, A3243G, A7511C and A7445G. Severe and profound levels of hearing loss were found in 22.8% and 75% of the cohort respectively, with the majority exhibiting flat (70.1%) or sloping (23.4%) audiograms that were commonly symmetrical (81.5%). However, as indicated, there was no clear pattern in the audiological findings overall. None of the 184 hearing impaired individuals exhibited any of the reported disease causing mutations of GJB2, including 35delG. There was, however, a high prevalence of two variants, the C>T variant at position g.3318-15 and the C>T variant at position g.3318-34, occurring in 21.4% and 46.2% of the deaf cohort respectively. The same variants were found to occur in 35% and 42.6% of a normal hearing control group (n = 63) respectively, indicating that these variations are polymorphisms. In three subjects (1.63% of the cohort), a T>A homozygous variation at position g.3318-6 was detected. Its significance in the causation of NSSNHL is yet to be determined. The GJB6-D13S1830 deletion was not detected in any of the participants. None of the four mitochondrial mutations screened for were found. 4 These results indicate that GJB2 is not a significant deafness gene in the African population of the Limpopo Province of South Africa and that significant genes for non-syndromic recessive hearing loss in this population are yet to be found. The geographical clustering of deafness found in this study, combined with the lack of identifiable common associated clinical features among the subjects of this study (excluding the WS sibling pair), suggests that these subjects have a genetic recessive non-syndromal type of hearing loss. In the context of historical and cultural evidence of consanguinity in this population, a founder effect cannot be ruled out. A rare mutation, R223X, previously identified only once out of 470 WS patients, was identified in the PAX3 gene among the WS sibling pair. A novel silent change GGG>GGT at amino acid 293, was also identified. These identical findings document, for the first time, a molecular defect in WS in an African sibling pair, and confirm WS Type I in this family, which could be found in other WS type I South Africans in the Limpopo Province of South Africa. The current study demonstrated that parents of genetically hearing impaired children in these areas are able to detect hearing loss at an early age, with over 60% suspecting their children’s hearing loss below 6 months of age. A child-centered management model encompassing all the areas relevant to childhood deafness/hearing impairment, which takes into consideration the prevailing logistical and financial constraints of the available healthcare system, is proposed. The implementation of this model requires a paradigm shift from the current fragmented model of service delivery to a cohesive patient-centered approach, based on concrete data from appropriate community based research, in which all the relevant parties communicate and share resources. 5 It would achieve the goals of early detection and intervention, as well as inclusive education for all. The relevant health and education policies are already in place and the posts funded. Equitable implementation of these policies would require appropriate community based research, as well as improved communication and consultation between the various stakeholders to ensure an efficient and affordable quality healthcare service for all hearing impaired South Africans.
7

"Eine vergleichende Genexpressionsanalyse von Gap- Junction- Strukturproteinen in oralen Plattenepithelkarzinomen und gesunder Schleimhaut" / A comparative gene expression study of gap-junction proteins in oral squamous cell carcinomas and normal mucosa

Brodmann, Tobias 23 April 2012 (has links)
No description available.

Page generated in 0.0589 seconds