• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Skattning av fordonsmassa med driftstatistik

Molin, Patrik, Gustafsson, Moa January 2011 (has links)
In the automatic manual transmission system, Opticruise, the choice of gear is based on several parameters such as road incline, driving resistance and vehicle mass. Many different mass estimations are made during driving. A final vehicle mass is then used to determine the current gear. Construction vehicles are often not equipped with air suspension and can therefore not estimate the vehicle mass when standing still. If that sort of vehicle is reloaded while standing still an incorrect mass estimation will be used and as an effect of that also a wrong gear. The solution of this problem is divided into two parts: first to detect the reload and then to estimate the new mass. An accelerometer will be used to detect a reload before start, because it reacts on the gradient change of the vehicle. A force equation will also be used to detect a reload, but only after the start, because it needs access to the vehicle acceleration to make the calculation. After a reload has been detected a new mass can be estimated. The estimation is based on previous vehicle mass estimated during driving. The new mass will be reasonable, if the assumption that the vehicle is mostly driving empty or fully loaded is true, and if it is possible to determine whether the vehicle becomes lighter or heavier at the reload.
2

Concept Study of Construction Ingress

Olsson, Sofia January 2008 (has links)
The purpose of this thesis is to, on Volvo Truck’s account, look at a new concept for the construction ingress used on construction vehicles which have a higher ground clearance than ordinary trucks. The high ground clearance makes it hard for the driver to reach the first instep and therefore a construction ingress is assembled below the stationary insteps. It is designed in a way that avoids damage if colliding with objects. The present construction ingress used is too expensive, too complex and a bit unsteady to climb on. There is also a new construction vehicle being developed and the old ingress might not fit the new truck. The concept generation is carried out using systematic concept development. There are many demands and requests for the ingress and these are summarized in a design criterion list. All wished-for properties can not be fulfilled for the simplest ingress designs since they conflict with each other, for example flexibility and stability. The concepts that are generated are evaluated and selected through different matrices until one concept is found to be the most promising. Different designs of this concept are discussed and one is chosen as the most suitable. The chosen concept design is already used by at least two competitors and that confirms its suitability. The detailed design presented is only a suggestion for a new construction ingress. Before manufacturing the design needs to be analysed more accurately and the strength, material and cost need to be optimized. The analyses made in the project only show that the design is realistic and that it is worth further work. The final design is promising since it is stable to use, consists of only a few simple parts and will be cheap to manufacture.
3

Concept Study of Construction Ingress

Olsson, Sofia January 2008 (has links)
<p>The purpose of this thesis is to, on Volvo Truck’s account, look at a new concept for the construction ingress used on construction vehicles which have a higher ground clearance than ordinary trucks. The high ground clearance makes it hard for the driver to reach the first instep and therefore a construction ingress is assembled below the stationary insteps. It is designed in a way that avoids damage if colliding with objects.</p><p>The present construction ingress used is too expensive, too complex and a bit unsteady to climb on. There is also a new construction vehicle being developed and the old ingress might not fit the new truck.</p><p>The concept generation is carried out using systematic concept development. There are many demands and requests for the ingress and these are summarized in a design criterion list. All wished-for properties can not be fulfilled for the simplest ingress designs since they conflict with each other, for example flexibility and stability.</p><p>The concepts that are generated are evaluated and selected through different matrices until one concept is found to be the most promising. Different designs of this concept are discussed and one is chosen as the most suitable. The chosen concept design is already used by at least two competitors and that confirms its suitability.</p><p>The detailed design presented is only a suggestion for a new construction ingress. Before manufacturing the design needs to be analysed more accurately and the strength, material and cost need to be optimized. The analyses made in the project only show that the design is realistic and that it is worth further work. The final design is promising since it is stable to use, consists of only a few simple parts and will be cheap to manufacture.</p>
4

Ett plus ett är lika med ett : En fallstudie om projektstyrningsmodeller inom ny produktutveckling

Johansson, Susanna, Wilhelmsson, Paulina January 2022 (has links)
Frågeställningar: F1: Vilka synergier existerar mellan processen för utförande av NPD och projektstyrning inom entreprenadfordonsbranschen i Sverige? F2: Vilka är utmaningarna i att integrera NPD processen med processen för projektstyrning?        Syfte: Syftet med denna studie är att undersöka utförandet av NPD processen inom branschen entreprenadfordon i Sverige, detta för att finna synergier mellan denna process samt processen för projektstyrning.    Metod: Studiens forskningsansats är av abduktiv karaktär där forskningsdesignen är en fördjupad fallstudie tillsammans med en kvalitativ analysmetod. Det teoretiska data består av vetenskaplig litteratur, medan den empiriska data omfattar fallstudien som består av observationer, dokumentanalys, workshops och intervjuer för att besvara frågeställningarna.    Slutsats: För besvarandet av studiens syfte är en slutsats att det finns synergier mellan NPD processen och processen för projektstyrning hos fallföretaget inom entreprenadfordonsbranschen. För besvarandet av F1 är en slutsats att det existerar synergier mellan processerna i form av företagsstrategi, syfte, målsättningar, projektdefinition och att de styrs av rigida metoder. För besvarandet av F2 är en slutsats att det finns markanta differenser mellan dessa processer, därmed är utmaningarna för integrering dess olika tidplaner, gatestrukturer, användningsområden och begränsad flexibilitet. / Research questions:      RQ1: What synergies exists between the process and execution of NPD and project management within the industry of construction vehicle in Sweden? RQ2: What are the challenges in the integration of the NPD process and the process of project management? Purpose:         The purpose of this study is to investigate the execution of NPD within the construction vehicle industry in Sweden, this to find synergies between this process and the process for project management.    Method:         The study approach is of an abductive nature and the research design is an exploratory case study in conjunction with a qualitative research method. The theoretical data consists of scientific literature, as the empirical data includes the case company and consists of observations, document analysis, workshops and interviews to fulfil the research questions.    Conclusion:    To answer the purpose of this study, a conclusion is that there exist synergies between the NPD process and the process for project management at the case company within the construction vehicle industry. To answer RQ1 a conclusion is that there exist synergies between the processes in forms of company strategy, purpose, objectives, project definition and that they are directed by rigid methods. To answer RQ2 a conclusion is that there are great differences between the processes, hence the challenges of integration are their different time plan, gate structure, area of use and limited flexibility.
5

Predictive control of fuel cell hybrid construction machines / Prediktiv styrning av bränslecellshybridbyggmaskiner

Kumaraswamy, Aniroodh January 2023 (has links)
Sedan industriella revolutionen har hastigheten av global uppvärmning och föroreningar i miljön ökat betydligt. Företag i fordonsindustrin arbetar aktivt för att göra sina produkter mer hållbara genom att bland annat minska utsläppen, minimera användningen av icke-förnybara resurser samt att återvinna. En batteridriven elbil (BEV) är en möjlig lösning för renare transport och marknaden har ökat signifikant. Men med den nuvarande batteriteknologin skulle stora byggmaskiner som grävmaskiner behöva tunga batterier för att möta sina energibehov, vilket ökar den totala vikten. Bränslecellshybriddrivna fordon (FCHEV) med vätgas är en potentiell lösning för medelstora och stora byggmaskiner som kombinerar bränsleceller och batterier för att tillhandahålla energin. Byggmaskiner har en växlande effekt och utför vanligtvis upprepande arbetsmönster, men en bränslecell reagerar långsammare på grund av den kemiska processen. Därför behövs ett effektivt energihanteringssystem för att möta effektbehovet, uppfylla systembegränsningar, minska vätgasförbrukningen samt att begränsa bränslecell- och batteridegraderingen. Syftet med denna avhandling är att utveckla en kontrollenhet och ett estimeringsinstrument för maskinbelastning för ett sådant FCHEV system. En ny energihanteringsstrategi föreslås genom att formulera den som ett optimeringsproblem och använda modellprediktiv reglering (MPC) för att minimera målfunktionen som involverar vätgasförbrukning och hastighetsbegränsningar. Kontrollenheten ger en optimal fördelning av bränslecell- och batterikraft över en tidsperiod som uppfyller det efterfrågade effektbehovet och följer systembegränsningarna. Maskinbelastningsestimeringen är baserad på autokorrelation och integreras med kontrollenheten. Estimeringsinstrumentet fungerar som en ingång till kontrollenheten som optimerar fördelningen av kraften mellan batteriet och bränslecellen. Jämfört med den tidigare realtidsfördelningsfunktionen för effekt som användes av Volvo Construction Equipment AB (Volvo CE) visade det sig att MPC kombinerat med autokorrelationsbaserad belastningsestimering främst använde ett mycket smalare fönster för batteriets laddningstillstånd (SoC), vilket öppnar upp möjligheten att minska batteristorleken i maskinen. Transienter i bränslecellens effekt minskar också, vilket minskar dess nedbrytning och förbättrar livslängden. / Ever since the industrial evolution, the rate of global warming and pollution in the environment have gone up significantly. Automotive companies are actively working towards making their products more sustainable in terms of reducing emissions, minimizing resource utilization of non-renewables, recycling, and several other steps. A pure battery electric vehicle (BEV) is a possible solution for cleaner transport and has seen widespread adoption among users. However, with the current battery technology, large construction machines such as excavators would need heavy batteries to meet their energy demand, pushing up the overall weight. Hydrogen driven Fuel Cell Hybrid Electric Vehicles (FCHEV) are a potential solution for medium and large sized construction machines having both fuel cells and batteries to supply energy. Construction machines have a highly transient power and generally perform repeating patterns of work but a fuel cell is slow reacting device due to the chemistry involved. Hence there is a need for an efficient energy management system to meet the power demand, satisfy system constraints, reduce hydrogen consumption and limit fuel cell and battery degradation. This thesis aims to develop a controller and a machine load predictor for such a FCHEV. A novel energy management strategy is proposed by formulating it as an optimization problem and using Model Predictive Control (MPC) to minimize the objective function that involves hydrogen consumption and rate constraints. The controller yields an optimal fuel cell and battery power split over a time-horizon that fulfills the demanded power and obeys the system constraints. An auto-correlation-based machine load predictor is integrated with the controller. The predictor serves as an input to the controller that optimizes the power split between the battery and fuel cell. Compared to the previous real-time power-split function used by Volvo Construction Equipment AB (Volvo CE), the MPC combined with the auto-correlation-based load predictor was found to primarily use a much narrower battery State of Charge (SoC) window, thus opening up the potential to reduce battery size in the machine. Transients in the fuel cell power are also reduced, thus slowing down its degradation and improving the lifetime.
6

Predicting power demand and optimizing energy management for fuel cell battery hybrid construction vehicles / Förutsäga effektbehov och optimera energihantering för bränslecellsbatterihybridbilar

Karthikeyan, Abhishek January 2023 (has links)
The automotive industry has been actively seeking ways to reduce emissions and combat global warming. While pure battery electric vehicles have shown promise in achieving zero-tailpipe emissions, they face challenges in meeting the energy demands of large construction machines like excavators and wheel loaders, due to the heavy batteries required. To overcome this issue, Fuel Cell Hybrid Electric Vehicles (FCHEV) have emerged as a potential solution. However, efficient energy management systems are crucial for FCHEV, as fuel cells are slow-reacting devices and construction machines operate with highly transient work cycles. This thesis addresses the need for an effective energy management strategy by developing a controller and machine load predictor for an FCHEV. The proposed approach utilizes Model Predictive Control (MPC) to minimize an objective function encompassing hydrogen consumption and rate constraints. The controller determines the optimal power split between the fuel cell and battery over a specific time-horizon, ensuring power demand is met while adhering to system constraints. Additionally, an auto-correlation-based machine load predictor is integrated with the controller to optimize the power split between the battery and fuel cell. By implementing the MPC combined with the auto-correlation-based load predictor, the FCHEV effectively utilizes a narrower battery State of Charge (SoC) window, potentially reducing the required battery size in the machine. Moreover, the strategy reduces transients in fuel cell power, slowing down degradation and enhancing its lifetime, in comparison to Volvo Construction Equipment AB’s (Volvo CE) previous real-time power-split function. This research contributes to the development of energy-efficient solutions for large construction machines, particularly in the context of FCHEV. The proposed energy management strategy utilizing MPC and load prediction techniques holds promise for improving overall system performance, reducing hydrogen consumption, and limiting the degradation of fuel cell and battery components. / Bilindustrin har sedan länge sökt sätt att minska utsläppen och bekämpa den globala uppvärmningen. Även om rent batteridrivna elektriska fordon är i princip avgasfria, så är det utmananade att möta energikraven för stora byggmaskiner som grävmaskiner och hjullastare med endast batterier. För att övervinna detta problem har bränslecell-hybrid-elektriska fordon (FCHEV från engelskans Fuel-cell hybrid electrical vehicle) identifierats som en potentiell lösning. Dock är effektiva energihanteringssystem avgörande för FCHEV, eftersom bränsleceller reagerar långsamt och byggmaskiner arbetar med snabbt varierande arbetscykler. Detta examensarbete försöker att möta behovet av en effektiv energihanteringsstrategi genom att utveckla en styrenhet och maskinbelastningsprognos för en FCHEV. Det föreslagna tillvägagångssättet använder modellprediktiv reglering (MPC) för att minimera en målfunktion som ta hänsyn till både vätekonsumtion och hastighetsbegränsningar. Styrenheten bestämmer den optimala effektfördelningen mellan bränslecellen och batteriet över en specifik tidshorisont, och säkerställer att effektkravet uppfylls samtidigt som systembegränsningarna följs. Dessutom integreras en auto-korrelationsbaserad maskinbelastningsprediktor med styrenheten för att optimera effektfördelningen mellan batteriet och bränslecellen. Genom att implementera MPC i kombination med den auto-korrelationsbaserade belastningsprognosen, använder FCHEV effektivt ett smalare fönster för batterets laddningstillstånd (SoC), vilket potentiellt minskar den nödvändiga batteristorleken i maskinen. Dessutom minskar strategin transienter i bränslecellseffekten och förbättrar dess livstid, jämfört med Volvo Construction Equipment AB:s (Volvo CE) tidigare lösning. Denna forskning bidrar till utvecklingen av energieffektiva lösningar för stora byggmaskiner, särskilt i sammanhanget FCHEV. Den föreslagna energihanteringsstrategin, med sin kombination av MPC och belastningsprediktionstekniker, har en potential att förbättra den totala systemprestandan, minska vätekonsumtionen och begränsa försämringen av bränslecell- och batterikomponenter.

Page generated in 0.0893 seconds