• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis, characterization and application of polymeric flame retardant additives obtained by chemical modification

Sauca, Silvana 20 April 2012 (has links)
A key part of the development of new polymeric materials focuses on the use of flame-retardant additives, which help to reduce the inherent flammability of polymers and the production of smoke and toxic gases. The aim of this thesis was the preparation, characterization and application of new polymeric flame-retardant additives, which can lead to intumescent systems when mixed with ¨commodity¨ polymers. The synthesis of this kind of additives was carried out by chemical modification of different polymeric structures (alcohols, polyketones, polyaziridines) with phosphorous moieties, previously described as promoting flame retardance structures, and/or nitrogen containing moieties. The efficacy of some of these additives was tested by blending with polypropylene, one of the most commonly used thermoplastic. Flame retardancy behaviour of the blends, as well their compatibility and mechanical properties were studied, in order to observe how the flame retardant additives may affect the substrate properties. / Una parte fundamental del desarrollo de nuevos materiales poliméricos se centra en la utilización de agentes retardantes a la llama, los cuales contribuyen a reducir la inherente combustibilidad de los polímeros y la producción de humos y de gases tóxicos. El objetivo del presente trabajo ha sido la preparación, characterización y aplicación de nuevos aditivos retardantes a la llama de tipo polimérico que pueden dar lugar al mezclarse con polímeros termoplásticos de gran consumo a sistemas de tipo intumescente. La síntesis de estos additivos se ha llevado a cabo por modificación química de diferentes estructuras polimericas (alcoholes, policetonas, poliaziridinas) con compuestos fosforados, descritos previamente como promotores de retardancia a la llama y/o compuestos con nitrogeno. La eficacidad de algunos de estos additivos ha sido estudiada por mezclarse con polipropileno, uno de los más utilizados termoplasticos.
12

Novel Monomer Design for Next-Generation Step-Growth Polymers

Wolfgang, Josh David 16 July 2021 (has links)
Facile monomer synthesis provided routes towards novel step-growth polymers for emerging applications. Adjustment of reaction conditions enabled green synthetic strategies, and promising scalability studies offered impetus for industrial funding. Engineering thermoplastics, such as linear polyetherimides (PEIs), had carefully targeted molecular weights for analysis of the effect of molecular weight and regiochemistry on the thermomechanical and rheological properties of PEIs. The design of linear, high performance PEIs comprising 3,3'- and 4,4'-bisphenol-A dianhydride (bis-DA) and m-phenylene diamine (mPD) provided an opportunity to elucidate the influence of dianhydride regiochemistry on thermomechanical and rheological properties. This unique pair of regioisomers allowed the tuning of the thermal and rheological properties for high glass transition temperature polyimides for engineering applications. The selection of the dianhydride regioisomer influenced the weight loss profile, entanglement molecular weight, glass transition temperature (Tg), tensile strain-at-break, zero-shear melt viscosity, average hole-size free volume, and the plateau modulus prior to viscous flow during dynamic mechanical analysis (DMA). The 3,3'-PEI composition interestingly exhibited a ~20 °C higher Tg than the corresponding 4,4'-PEI analog. Moreover, melt rheological analysis revealed a two-fold increase in Me for 3,3'-PEI, which pointed to the origin of the differences in mechanical and rheological properties as a function of PEI backbone geometry. The frequently studied 4,4'-PEI exhibited exceptional thermal, mechanical, and rheological properties, yet the 3,3'-PEI regioisomer lacked significant study in the industrial and academic sectors due to its 'inferior' properties, namely poor mechanical properties. Introduction of long-chain branching (LCB) into PEIs provided a unique comparison between a commercially relevant PEI (Ultem® 1000) and a regioisomer infrequently found in the literature. Thermal stability remained consistent for each regioisomer, and Tgs for the 3,3'- and 4,4'-LCB-PEIs agreed well with prior literature. Rheological analysis demonstrated typical shear thinning and low-shear viscosity trends for LCB systems. The targeted molecular weights for the 3,3'-LCB-PEIs were well below the Me cutoff for "high molecular weight," and for this reason the rheological properties demonstrated inconsistent trends. Further study of PEIs led to the incorporation of ionic endgroups. These provided physical crosslinks, which enhanced mechanical and rheological properties of branched PEIs compared to their non-ionic analogs. The Tgs decreased with an increase in branching concentration for the phenyl-terminated PEI, while it remained unchanged for the ionically-endcapped PEIs. The divalent salts demonstrated higher mechanical strength and melt viscosities compared to the monovalent salt and the non-ionic PEIs. Interestingly, the zinc-endcapped PEI series exhibited decreased high-shear viscosities compared to the other PEIs, lending to promising industrial applications for the zinc-endcapped branched and linear PEIs for high temperature applications. Additional engineering thermoplastics in the form of bio-based polyureas exhibited mechanical properties similar to those of non-bio-based polyureas. The isocyanate-free synthetic route incorporated an essential urea degradation mechanism at elevated temperatures to produce isocyanic acid, which then reacted with amines to produce linear polyurea thermoplastics. Urea provided a sustainable and bio-friendly reagent for high molecular weight, isocyanate-free polyureas. Poly(propylene glycol) triamine enabled the long-chain branching of thermoplastic polyureas. Differential scanning calorimetry (DSC) showed no change in Tg for the series; however, melting peaks decreased in intensity as the branching concentration increased, indicating a reduction in crystallinity. Tensile testing eluded to a decrease in ultimate stress values for higher branching concentrations, while melt rheology showed significant differences in melt viscosities. Viscosities increased markedly with an increase in branching concentration, signifying greater entanglement and stronger physical crosslinks for the branched polyureas. Further analysis of possible isocyanate-free routes led to the use of 1,1'-carbonyldiimidazole (CDI) to generate polyureas and polyurethanes. CDI, known in the literature for its use in amidation and functionalization reactions, enabled the production of well-defined and stable polyurethane monomers. The functionalization of butanediol with CDI yielded an electrophilic biscarbamate monomer, bis-carbonylimidazolide (BCI), suitable for further step-growth polymerization in the presence of amines. The reaction of this novel monomer with aliphatic diamines produced thermoplastic polyurethanes with high thermal stability, tunable glass transition temperatures based on incorporation of flexible polyether segments, and creasable thin films. It is envisioned that CDI functionalized diols will afford access to various polymeric backbones without the use of toxic isocyanate-containing strategies. Additionally, non-isocyanate polyurethane (NIPU) foams were produced from BCI monomers without the need of blowing agents, catalysts, or solvents. These materials offered an alternative to existing foaming technology, which typically employed isocyanates. Polyurethanes were foamed through a CO2 thermal decomposition mechanism involving the BCI monomers. We investigated two series of polyurethane foams with a tunable Tg range from ~0 °C to ~110 °C. We found that the incorporation of aromatic amines vastly altered the foam thermomechanical properties, and the resulting foams were closed-cell in nature. / Doctor of Philosophy / Step-growth polymers play a significant role in commercial and industrial applications. On-going work in this field focuses on sustainability, biodegradability, and improved processability. This dissertation encompasses the improvement and innovation of current and novel engineering thermoplastics and foams. The careful purification and step-growth synthetic strategies herein, afforded targeted molecular weights for analysis of linear and long-chain branched (LCB) polyetherimides (PEIs). Further analysis of LCB-PEIs, with monovalent and divalent ionic endgroups, provided an opportunity to study the effect of ionic interactions and physical crosslinks at high temperatures (>300 °C). The long branches improved the melt processability compared to linear analogues at equivalent molecular weights. The challenge to investigate polyurethanes using non-isocyanate methodologies offered an opportunity to apply fundamental small-molecule, organic synthesis to macromolecular science. 1,1'-Carbonyldiimidazole (CDI) provided a platform to generate polymeric chains from industrially relevant monomers. Additional testing serendipitously discovered the generation of CO2 upon thermal degradation of the novel monomers. Harnessing the release of CO2, during the gelation of polyurethanes, provided an isocyanate-, catalyst-, and solvent-free synthetic route towards polyurethane foams that boasts scalability and industrial relevance.
13

RAFT dispersion polymerization : a method to tune the morphology of thymine-containing self-assemblies

Kang, Y., Pitto-Barry, Anaïs, Maitland, A., O'Reilly, R.K. 11 June 2015 (has links)
Yes / The synthesis and self-assembly of thymine-containing polymers were performed using RAFT dispersion polymerization. A combination of microscopy and scattering techniques was used to analyze the resultant complex morphologies. The primary observation from this study is that the obtained aggregates induced during the polymerization were well-defined despite the constituent copolymers possessing broad dispersities. Moreover, a variety of parameters, including the choice of polymerization solvent, the degree of polymerization of both blocks and the presence of an adenine-containing mediator, were observed to affect the resultant size and shape of the assembly. / University of Warwick, National Science Foundation (U.S.) (NSF), Engineering and Physical Sciences Research Council (EPSRC)
14

Réalisation et caractérisation d'aérogels organiques à fortes teneurs métalliques obtenus à partir d'un complexe de titane polymérisable / Synthesis and studies of novel high metal content organic aerogels obtained from a polymerizable titanium complex

Cadra, Stéphane 16 December 2010 (has links)
L'étude de la fusion par confinement inertiel du mélange deutérium + tritium (DT) est une problématique depuis longtemps abordée par le CEA. Les expérimentations liées à cette thématique, effectuées prochainement au sein du laser mégajoule (LMJ), nécessitent l'utilisation de matériaux aux propriétés particulières. Cela concerne entre autres les mousses de polymères (aérogels organiques) composant les cibles de pré-ignition. De tels matériaux doivent notamment associer une importante porosité à une forte teneur métallique (1% atomique de Ti), tout en étant compatible avec les procédés de préparation utilisés. Dans ce contexte, un nouveau complexe polymérisable de titane a été préparé et caractérisé par plusieurs techniques d'analyses. Ce monomère dispose d'une forte teneur métallique tout en présentant une bonne stabilité vis-à-vis l'air et l'humidité. Sa copolymérisation radicalaire selon différentes conditions suivie d'un séchage en condition supercritique a permis l'obtention d'une série d'aérogels organiques. Les caractérisations chimiques (RMN, infrarouge et analyses élémentaires) ainsi que les caractérisations structurales (MEB-EDS, MET, mesure des isothermes d'adsorption/désorption de l'azote et SAXS) de ces polymères ont permis de valider les critères mentionnés dans notre cahier des charges. En outre, ces données ont permis de déterminer les mécanismes de formation de la nanostructure des mousses. / Inertial Confinement Fusion (ICF) is a technique widely studied by the French atomic commission (CEA). Experiments will be performed within the Laser Megajoule (LMJ). They require innovative materials like organic aerogels that constitute laser targets. Such polymeric material must provide both a high porosity and a significant titanium percentage (1 atom %). Moreover, the monomers developed must be compatible with the synthesis procedure already in use. According to these specifications, a new polymerizable titanium complex was synthesized and fully characterized. This air and moisture-stable monomer provides a high metal percentage. Its free-radical cross-linked copolymerization affords several titanium-containing polymers. These gels were dried under supercritical conditions and organic aerogels were obtained. The chemical compositions of these materials were investigated by NMR, IR and elemental analysis while their structure was characterized by MEB-EDS, MET, N2 adsorption/desorption isotherms measurements and SAXS. The data collected fit the specification requirements. Moreover, the mechanisms responsible of the foam nanostructure formation were discussed.
15

Novel phosphorus containing poly(arylene ethers) as flame retardant additives and as reactant in organic synthesis

Satpathi, Hirak 13 August 2015 (has links) (PDF)
Due to their outstanding properties, poly(arylene ethers) are useful as toughness modifiers in epoxy resins (EP). Furthermore, these polymers show rather low intrinsic fire risks. According to recent research it has been incorporated that poly(arylene ether phosphine oxides) [PAEPO’s] can further improve the fire behavior. Increasing phosphorous content of the PAEPO can influence the fire behavior too. Fire retardants containing phosphorus – regardless of whether an additive or reactive approach is used – show different mechanisms in the condensed and gas phase. In the present study PSU Control (BPA based polysulfone) with four different PAEPO’s and their corresponding blends with an EP were investigated. All poly(arylene ether phosphine oxides) were synthesized by nucleophilic aromatic polycondensation. The polymers obtained covered a wide range of weight average molar masses (6,000 – 150,000 g/mol) as determined by size exclusion chromatography with multi-angle light scattering detection (MALLS). FTIR, NMR spectroscopy and MALDI-TOF revealed formation of the desired polymer structure of the linear poly(arylene ethers). All polymers were easily soluble in common organic solvents, thus enabling processing from solution.The pyrolysis and the fire retardancy mechanisms of the polymers and blends with epoxy resin (EP) were tackled by means of a comprehensive thermal analysis (thermogravimetry (TG), TG-evolved gas analysis) and fire tests [PCFC, limiting oxygen index (LOI), UL-94, cone calorimeter]. The Mitsunobu reaction of Dimethyl-5-hydroxyisophthalate and a long chain semifluorinated alcohol requires triphenyl phosphine as a reactant. Identical, in some case higher yield was obtained in the usual conditions, with triphenyl phosphine and with trivalent phosphorus containing polymers, which was prepared in solvent free bulk (melt) polymerization technique from trivalent phosphorus monomer and a silylated diphenol in presence of CsF. Purification and the recovery of the final product which is always a big challenge in case of Mitsunobu reaction, was far more easier using polymer compared to triphenyl phosphine. During polymerization there was a possibility to have polymer having repeating unit containing both trivalent phosphorus and phosphine oxide. The trivalent phosphorus content of the polymer can be varied using different molar concentration of CsF.
16

Novel phosphorus containing poly(arylene ethers) as flame retardant additives and as reactant in organic synthesis

Satpathi, Hirak 13 August 2015 (has links)
Due to their outstanding properties, poly(arylene ethers) are useful as toughness modifiers in epoxy resins (EP). Furthermore, these polymers show rather low intrinsic fire risks. According to recent research it has been incorporated that poly(arylene ether phosphine oxides) [PAEPO’s] can further improve the fire behavior. Increasing phosphorous content of the PAEPO can influence the fire behavior too. Fire retardants containing phosphorus – regardless of whether an additive or reactive approach is used – show different mechanisms in the condensed and gas phase. In the present study PSU Control (BPA based polysulfone) with four different PAEPO’s and their corresponding blends with an EP were investigated. All poly(arylene ether phosphine oxides) were synthesized by nucleophilic aromatic polycondensation. The polymers obtained covered a wide range of weight average molar masses (6,000 – 150,000 g/mol) as determined by size exclusion chromatography with multi-angle light scattering detection (MALLS). FTIR, NMR spectroscopy and MALDI-TOF revealed formation of the desired polymer structure of the linear poly(arylene ethers). All polymers were easily soluble in common organic solvents, thus enabling processing from solution.The pyrolysis and the fire retardancy mechanisms of the polymers and blends with epoxy resin (EP) were tackled by means of a comprehensive thermal analysis (thermogravimetry (TG), TG-evolved gas analysis) and fire tests [PCFC, limiting oxygen index (LOI), UL-94, cone calorimeter]. The Mitsunobu reaction of Dimethyl-5-hydroxyisophthalate and a long chain semifluorinated alcohol requires triphenyl phosphine as a reactant. Identical, in some case higher yield was obtained in the usual conditions, with triphenyl phosphine and with trivalent phosphorus containing polymers, which was prepared in solvent free bulk (melt) polymerization technique from trivalent phosphorus monomer and a silylated diphenol in presence of CsF. Purification and the recovery of the final product which is always a big challenge in case of Mitsunobu reaction, was far more easier using polymer compared to triphenyl phosphine. During polymerization there was a possibility to have polymer having repeating unit containing both trivalent phosphorus and phosphine oxide. The trivalent phosphorus content of the polymer can be varied using different molar concentration of CsF.

Page generated in 0.0893 seconds