• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metadata-Aware Query Processing over Data Streams

Ding, Luping 22 April 2008 (has links)
Many modern applications need to process queries over potentially infinite data streams to provide answers in real-time. This dissertation proposes novel techniques to optimize CPU and memory utilization in stream processing by exploiting metadata on streaming data or queries. It focuses on four topics: 1) exploiting stream metadata to optimize SPJ query operators via operator configuration, 2) exploiting stream metadata to optimize SPJ query plans via query-rewriting, 3) exploiting workload metadata to optimize parameterized queries via indexing, and 4) exploiting event constraints to optimize event stream processing via run-time early termination. The first part of this dissertation proposes algorithms for one of the most common and expensive query operators, namely join, to at runtime identify and purge no-longer-needed data from the state based on punctuations. Exploitations of the combination of punctuation and commonly-used window constraints are also studied. Extensive experimental evaluations demonstrate both reduction on memory usage and improvements on execution time due to the proposed strategies. The second part proposes herald-driven runtime query plan optimization techniques. We identify four query optimization techniques, design a lightweight algorithm to efficiently detect the optimization opportunities at runtime upon receiving heralds. We propose a novel execution paradigm to support multiple concurrent logical plans by maintaining one physical plan. Extensive experimental study confirms that our techniques significantly reduce query execution times. The third part deals with the shared execution of parameterized queries instantiated from a query template. We design a lightweight index mechanism to provide multiple access paths to data to facilitate a wide range of parameterized queries. To withstand workload fluctuations, we propose an index tuning framework to tune the index configurations in a timely manner. Extensive experimental evaluations demonstrate the effectiveness of the proposed strategies. The last part proposes event query optimization techniques by exploiting event constraints such as exclusiveness or ordering relationships among events extracted from workflows. Significant performance gains are shown to be achieved by our proposed constraint-aware event processing techniques.
2

State Spill Policies for State Intensive Continuous Query Plan Evaluation

Jbantova, Mariana G 02 May 2007 (has links)
The needs of new modern day applications such as network monitoring systems, telecommunications data management, web applications, remote medical monitoring applications and others for near real time results over continuous data streams have spurred the development of new data management systems called Data Stream Management Systems (DSMS). Unlike traditional database systems which answer one-time user queries only after the finite data has been captured on disk, DSMSs provide on-the-fly answers to user queries as data is arriving at various rates in the form of continuous, potentially infinite streams of tuples. To meet the timeliness requirements of applications, DSMSs aim to keep all data in main memory. Thus queries with multiple stateful operators pose a major strain on memory. Existing adaptation techniques designed to address this issue are ineffective when faced with continuous bursts of high data rates. When system load exceeds system capacity, a DSMS has three options: 1) discard some new data; 2) crash; or 3) spill data to disk. Only option three allows it to produce delayed, yet accurate and complete query results. However, this option involves disk access overhead and change in the natural order of tuples flowing through the query plan tree. As not all stream operators can process correctly out of order tuples, data spilling may have a negative impact on the quality of the final results. Moreover, since operators in a query plan are interconnected, changes in the order of tuple flows inevitably impact the stages of execution of affected downstream operators such as for example data purging . Data purging is necessary for processing continuous queries composed of stateful operators. The state of such operators is divided into finite non-overlapping sets of tuples called windows. Thus, after all the tuples for a window have been processed and all results output, these tuples can be discarded to free memory for new data. To address these issues, we have redesigned the state structure of continuous operators into smaller, finite, non-overlapping sets of tuples such as partitioned window groups, which incur less disk-access overhead. Second, we provide for the capability of continuous operators to correctly process out of order tuples using punctuation pointers. Third, we design methods for downstream operators to synchronize their processing stages with those of upstream operators to achieve optimized query plan throughput. Putting these techniques together, we have designed a consolidated spilling adaptation strategy which considers all aspects of operators' inter-connections in a query plan for making optimal adaptation decisions. The effectiveness of our integrated approach was empirically tested in a comparative evaluation study against several alternate spilling adaptation strategies. We conducted our experiments on CAPE, a DSMS developed at WPI, using different types of query plans composed of multiple partitioned window join operators. Our experiments prove that despite the higher overhead of a more synchronized adaptation approach, our consolidated strategy provides better query plan performance and higher plan throughput during periods of continuous bursts of high data rates.
3

D-CAPE: A Self-Tuning Continuous Query Plan Distribution Architecture

Sutherland, Timothy Michael 05 May 2004 (has links)
The study of systems for querying data streams, coined Data Stream Management Systems (DSMS), has gained in popularity over the last several years. This new area of research for the database community includes studies in areas such as Sensor Networks, Network Intrusion, and monitoring data such as Medicine, Stock, or Weather feeds. With this new popularity comes increased performance expectations, with increased data sizes and speed and larger more complex query plans as well as high volumes of possibly small queries. Due to the finite resources on a single query processor, future Data Stream Management Systems must distribute their workload to multiple query processors, working together in a synchronized manner. This thesis discusses a new Distributed Continuous Query System (D-CAPE) developed here at WPI that has the ability to distribute query plans over a large cluster of machines. We describe the architecture of the new system, policies for query plan distribution to improve overall performance, as well as techniques for self-tuning query plan re-distribution. D-CAPE is designed to be as flexible as possible for future research. We include a multi-tiered architecture that scales to a large number of query processors. D-CAPE has also been designed to minimize the cost of the communications network by bundling synchronization messages, thus minimizing packets sent between query processors. These messages are also incremental at run-time to aid in minimizing the communication cost of D-CAPE. The architecture allows for the flexible incorporation of different distribution algorithms and operator reallocation policies.. D-CAPE provides an operator reallocation algorithm that is able to seamlessly move an operator(s) across any query processors in our computing cluster. We do so by creating ``pipes" between query processors to allow the data streams to flow, and then filling these pipes with data streams once execution begins. Operator redistribution is accomplished by systematically reconnecting these pipes as to not interrupt the data flow. Experimental evaluation using our real prototype system (not just simulation) shows that executing a query plan distributed over multiple machines causes no more overhead than processing it on a single centralized query processor; even for rather lightly loaded machines. Further, we find that distributing a query plan among a cluster of query processors can boost performance up to twice that of a centralized DSMS. We conclude that the limitation of each query processor within the distributed network of cooperating processors is not primarily in the volume of the data nor the number of query operators, but rather the number of data connections per processor and the allocation of the stateful and thus most costly operators. We also find that the overhead of distributing query operators is very low, allowing for a potentially frequent dynamic redistribution of query plans during execution.
4

Novel spatial query processing techniques for scaling location based services

Pesti, Peter 12 November 2012 (has links)
Location based services (LBS) are gaining widespread user acceptance and increased daily usage. GPS based mobile navigation systems (Garmin), location-related social network updates and "check-ins" (Facebook), location-based games (Nokia), friend queries (Foursquare) and ads (Google) are some of the popular LBSs available to mobile users today. Despite these successes, current user services fall short of a vision where mobile users could ask for continuous location-based services with always-up-to-date information around them, such as the list of friends or favorite restaurants within 15 minutes of driving. Providing such a location based service in real time faces a number of technical challenges. In this dissertation research, we propose a suite of novel techniques and system architectures to address some known technical challenges of continuous location queries and updates. Our solution approaches enable the creation of new, practical and scalable location based services with better energy efficiency on mobile clients and higher throughput at the location servers. Our first contribution is the development of RoadTrack, a road network aware and query-aware location update framework and a suite of algorithms. A unique characteristic of RoadTrack is the innovative design of encounter points and system-defined precincts to manage the desired spatial resolution of location updates for different mobile clients while reducing the complexity and energy consumption of location update strategies. The second novelty of this dissertation research is the technical development of Dandelion data structures and algorithms that can deliver superior performance for the periodic re-evaluation of continuous road-network distance based location queries, when compared with the alternative of repeatedly performing a network expansion along a mobile user's trajectory. The third contribution of this dissertation research is the FastExpand algorithm that can speed up the computation of single-issue shortest-distance road network queries. Finally, we have developed the open source GT MobiSim mobility simulator, a discrete event simulation platform to generate realistic driving trajectories for real road maps. It has been downloaded and utilized by many to evaluate the efficiency and effectiveness of the location query and location update algorithms, including the research efforts in this dissertation.
5

Sustainable Declarative Monitoring Architecture : Energy optimization of interactions between application service oriented queries and wireless sensor devices : Application to Smart Buildings / Architecture de monitoring déclaratif durable : Optimisation énergétique des interactions entre requêtes applicatives orientées service et réseau de capteurs sans fil : Application aux bâtiments intelligents

Pinarer, Ozgun 15 December 2017 (has links)
La dernière décennie a montré un intérêt croissant pour les bâtiments intelligents. Les bâtiments traditionnels sont les principaux consommateurs d’une partie importante des ressources énergétiques, d'où le besoin de bâtiments intelligents a alors émergé. Ces nouveaux bâtiments doivent être conçus selon des normes de construction durables pour consommer moins. Ces bâtiments intelligents sont devenus l’un des principaux domaines d’application des environnements pervasifs. En effet, une infrastructure basique de construction de bâtiment intelligent se compose notamment d’un ensemble de capteurs sans fil. Les capteurs basiques permettent l’acquisition, la transmission et la réception de données. La consommation d’énergie élevée de l’ensemble de ces appareils est un des problèmes les plus difficiles et fait donc l’objet d’études dans ce domaine de la recherche. Les capteurs sont autonomes en termes d’énergie. Etant donné que la consommation d’énergie a un fort impact sur la durée de vie du service, il existe plusieurs approches dans la littérature. Cependant, les approches existantes sont souvent adaptées à une seule application de surveillance et reposent sur des configurations statiques pour les capteurs. Dans cette thèse, nous contribuons à la définition d’une architecture de surveillance déclaratif durable par l’optimisation énergétique des interactions entre requêtes applicative orientées service et réseau de capteurs sans fil. Nous avons choisi le bâtiment intelligent comme cas d’application et nous étudions donc un système de surveillance d’un bâtiment intelligent. Du point de vue logiciel, un système de surveillance peut être défini comme un ensemble d’applications qui exploitent les mesures des capteurs en temps réel. Ces applications sont exprimées dans un langage déclaratif sous la forme de requêtes continues sur les flux de données des capteurs. Par conséquent, un système de multi-applications nécessite la gestion de plusieurs demandes de flux de données suivant différentes fréquences d’acq/tx de données pour le même capteur sans fil, avec des exigences dynamiques requises par les applications. Comme une configuration statique ne peut pas optimiser la consommation d’énergie du système, nous proposons une approche intitulée Smart-Service Stream-oriented Sensor Management (3SoSM) afin d’optimiser les interactions entre les exigences des applications et l’environnement des capteurs sans fil, en temps réel. 3SoSM offre une configuration dynamique des capteurs pour réduire la consommation d’énergie tout en satisfaisant les exigences des applications en temps réel. Nous avons conduit un ensemble d’expérimentations effectuées avec un simulateur de réseau de capteurs sans fil qui ont permis de valider notre approche quant à l’optimisation de la consommation d’énergie des capteurs, et donc l’augmentation de la durée de vie de ces capteurs, en réduisant notamment les communications non nécessaires. / Recent researches and analysis reports declare that high energy consumption of buildings is major problem in developed countries. As a result, they show concretely that building energy management systems (BEMS) and deployed wireless sensor network environments are important for energy efficiency of building operations. In the literature, existing smart building management systems focus on energy consumption of the building, hardware deployed inside/outside of the building and network communication issues. They adopt static configurations for wireless sensor devices and proposed models are fitted to a single application. In this study, we propose a sustainable declarative monitoring architecture that focus on the energy optimisation of interactions between application service oriented queries and wireless sensor devices. We consider the monitoring system as a set of applications that exploit sensor measures in real time such as HVAC automation and control systems, real time supervision, security. These applications can be configured dynamically by the users or by the supervisor. In our approach, we take a data point of view: applications are declaratively expressed as a set of continuous queries on the sensor data stream. To achieve our objective of energy aware optimization of the monitoring architecture, we formalize sensor device configuration and fit data acquisition and data transmission to actual applications requirements. We present a complete monitoring architecture and an algorithm that handles dynamic sensor configuration. We introduce a platform that covers physical and also simulated wireless sensor devices.

Page generated in 0.0832 seconds