• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 846
  • 301
  • 196
  • 188
  • 81
  • 72
  • 38
  • 25
  • 19
  • 13
  • 10
  • 9
  • 9
  • 6
  • 6
  • Tagged with
  • 2306
  • 675
  • 520
  • 324
  • 321
  • 295
  • 266
  • 212
  • 182
  • 166
  • 165
  • 164
  • 163
  • 160
  • 159
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

The effect of freezing on concrete at different lengths of time after mixing

Harris, Guy H. January 1945 (has links)
M.S.
362

The Influence of Pressure Ratio on Film Cooling Performance of a Turbine Blade

Bubb, James Vernon 05 August 1999 (has links)
The relationship between the plenum to freestream total pressure ratio on film cooling performance is experimentally investigated. Measurements of both the heat transfer coefficient and the adiabatic effectiveness were made on the suction side of the center blade in a linear transonic cascade. Entrance and exit Mach numbers were 0.3 and 1.2 respectively. Reynolds number based on chord and exit conditions is 3 x 10⁶. The blade contour is representative of a typical General Electric first stage, high turning, turbine blade. Tunnel freestream conditions were 10 psig total pressure and approximately 80 °C. A chilled air coolant film was supplied to a generic General Electric leading edge showerhead coolant scheme. Pressure ratios were varied from run to run over the ranges of 1.02 to 1.20. The density ratio was near a value of 2. A method to determine both the heat transfer coefficient and film cooling effectiveness from experimental data is outlined. Results show that the heat transfer coefficient is independent of the pressure ratio over these ranges of blowing parameters. Also, there is shown to be a weak reduction of film cooling effectiveness with higher pressure ratios. Results are shown for effectiveness and heat transfer coefficient profiles along the blade. / Master of Science
363

Thermal management of diode laser arrays

Huddle, Jennifer J. 01 October 2000 (has links)
No description available.
364

Spray cooling at low system pressure

Marcos, Anabel 01 July 2001 (has links)
No description available.
365

Computer simulation of a spray cooling system with fc-72

Tan, Shih Wei 01 October 2001 (has links)
No description available.
366

Testing of a repaired micro-concrete model of a cooling tower shell

Mozaffarian, Hossein January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
367

Thermal process and novel control methods for spin-casting

Huan, Z., Jordaan, G.D. January 2006 (has links)
Published Article / The quality of spin casting products and mould life are critically dependent on thermal conditions they undergo. In order to improve the performance of production and to optimise the spin-casting process, characteristics of the thermal process was firstly identified by means of the measurement and simulation. Furthermore the investigation of the developed control methods, including the thermal property substitute method and mixture method of the metal powder, was kept on the effect of air-cooling induced automatically from the spinning of the mould on the thermal process. <br>The air cooling system was developed to optimise the thermal process during casting, utilising a theoretical analysis of the air-flow characteristics in a cooling tube submerged in a silicon mould and the characteristics of convection heat transfer associated with the mould and cast part. A numerical simulation of the casting process was also adopted in the analysis. The effect of the developed system on the thermal process was determined experimentally and it was found that a system of aircooling, automatically induced from the spinning of the mould, is feasible in optimisation of the thermal process. <br>The developed control methods can be applied to the practice of spin casting individually or collectively according to the specific situations and requirements.
368

Model based control optimisation of renewable energy based HVAC Systems

Pietruschka, Dirk January 2010 (has links)
During the last 10 years solar cooling systems attracted more and more interest not only in the research area but also on a private and commercial level. Several demonstration plants have been installed in different European countries and first companies started to commercialise also small scale absorption cooling machines. However, not all of the installed systems operate efficiently and some are, from the primary energy point of view, even worse than conventional systems with a compression chiller. The main reason for this is a poor system design combined with suboptimal control. Often several non optimised components, each separately controlled, are put together to form a ‘cooling system’. To overcome these drawbacks several attempts are made within IEA task 38 (International Energy Agency Solar Heating and Cooling Programme) to improve the system design through optimised design guidelines which are supported by simulation based design tools. Furthermore, guidelines for an optimised control of different systems are developed. In parallel several companies like the SolarNext AG in Rimsting, Germany started the development of solar cooling kits with optimised components and optimised system controllers. To support this process the following contributions are made within the present work: - For the design and dimensioning of solar driven absorption cooling systems a detailed and structured simulation based analysis highlights the main influencing factors on the required solar system size to reach a defined solar fraction on the overall heating energy demand of the chiller. These results offer useful guidelines for an energy and cost efficient system design. - Detailed system simulations of an installed solar cooling system focus on the influence of the system configuration, control strategy and system component control on the overall primary energy efficiency. From the results found a detailed set of clear recommendations for highly energy efficient system configurations and control of solar driven absorption cooling systems is provided. - For optimised control of open desiccant evaporative cooling systems (DEC) an innovative model based system controller is developed and presented. This controller consists of an electricity optimised sequence controller which is assisted by a primary energy optimisation tool. The optimisation tool is based on simplified simulation models and is intended to be operated as an online tool which evaluates continuously the optimum operation mode of the DEC system to ensure high primary energy efficiency of the system. Tests of the controller in the simulation environment showed that compared to a system with energy optimised standard control the innovative model based system controller can further improve the primary energy efficiency by 19 %.
369

Optimization of endwall film-cooling in axial turbines

Thomas, Mitra January 2014 (has links)
Considerable reductions in gas turbine weight and fuel consumption can be achieved by operating at a higher turbine entry temperature. The move to lean combustors with flatter outlet temperature profiles will increase temperatures on the turbine endwalls. This work will study methods to improve endwall film cooling, to allow these advances. Turbine secondary flows are caused by a deficit in near-wall momentum. These flow features redistribute near-wall flows and make it difficult to film-cool endwalls. In this work, endwall film cooling was studied by CFD and validated by experimental measurements in a linear cascade. This study will add to the growing body of evidence that injection of high momentum coolant into the upstream boundary layer can suppress secondary flows by increasing near-wall momentum. The reduction of secondary flows allows for effective cooling of the endwall. It is also noted that excess near-wall momentum is undesirable. This leads to upwash on the vane, driving coolant away from the endwall. A passive-scalar tracking method has been devised to isolate the contribution of individual film cooling holes to cooling effectiveness. This method was used to systematically optimize endwall cooling systems. Designs are presented which use half the coolant mass flow compared to a baseline design, while maintaining similar cooling effectiveness levels on the critical trailing endwall. By studying the effect of coolant injection on vane inlet total pressure profile, secondary flows were suppressed and upwash on the vane was reduced. The methods and insight obtained from this study were applied to a high pressure nozzle guide vane endwall from a current engine. The optimized cooling system developed offers significant improvement over the baseline.
370

Heat loss from the upper airways and through the skull : studies of direct brain cooling in humans

Harris, Bridget A. January 2010 (has links)
Increased temperature is common after brain trauma and stroke, considered to be detrimental to outcome and usually treated with systemic cooling interventions. However, targeting cooling interventions at the head may be more logical. In addition to arterial blood, the human brain is cooled by heat loss through the skull and heat loss from the upper airways. It is these two mechanisms of heat loss which are the subject of this thesis. The initial research aim was to find out if restoring ‘normal’ airflow through the upper respiratory tracts of intubated, brain-injured patients could reduce brain temperature. Air at room temperature and humidity replicating normal resting minute volume was continuously administered nasally to 15 such patients. After a 30 minute baseline, they were randomised to receive airflow or no airflow for 6 hours and then crossed over for a further 6 hours. The airflow did not produce significant reductions in intracranial temperature (Mean -0.13 °C, SD 0.55 °C, 95% CI -0.43 to 0.17 °C). However, some evidence of heat loss through the skull was serendipitously observed. This was investigated formally in a randomised factorial trial, together with nasal airflow with enhancements (unhumidified air at twice minute volume with 20 ppm nitric oxide gas) intended to overcome some of the possible reasons for the neutral results with ‘normal’ airflow. After a 30 minute baseline, 12 intubated, brain-injured patients received enhanced nasal airflow, bilateral head fanning (8 m/s), both together and no intervention in randomised order. Each intervention was delivered for 30 minutes followed by 30 minutes washout. Mean brain temperature was reduced by 0.15 °C with nasal airflow (p=0.001, 95% CI 0.06 to 0.23 °C) and 0.26 °C with head fanning (p<0.001, 95% CI 0.17 to 0.34 °C). The estimate of the combined effect of airflow and fanning on brain temperature was 0.41 °C. Physiologically, this study demonstrated that heat loss through the upper airways and through the skull can reduce parenchymal brain temperature in brain-injured humans, that the effects are additive and the onset of temperature reduction is rapid. The most promising mechanism appeared to be heat loss through the skull and the final piece of research involved developing and initial (phase I) assessment of a convective head cooling device in healthy volunteers, with intracranial temperature measured non-invasively by magnetic resonance spectroscopy. After a 10 minute baseline, five healthy volunteers received 30 minutes head cooling followed by 30 minutes head and neck cooling via a hood and neck collar delivering 14.5 °C air at 42.5 L/s. The net brain temperature reduction with head cooling was 0.45 °C (SD 0.23 °C, p=0.01, 95% CI 0.17 to 0.74 °C) and with head and neck cooling 0.37 °C (SD 0.30 °C, p=0.049, 95% CI 0.00 to 0.74 °C). There was no significant reduction in cooling with progressive depth into the brain i.e. core brain was cooled. The main relevance of this research is physiological because it adds to knowledge and understanding of mechanisms of heat loss from the upper airways and through the skull in humans. Clinically, factors which enhance or inhibit these mechanisms may have an effect on brain temperature but the therapeutic relevance of head cooling by these methods requires further research.

Page generated in 0.0612 seconds