381 |
Topography based fan control for heavy trucks / Topografibaserad kylfläktstyrning för tunga fordonLerede, Niclas January 2009 (has links)
<p>This thesis is a study of how cooling fan control can be improved by using road topography information. Two such controllers are presented, one that uses information available in vehicles produced today, and one that combines GPS-information with digital topographic maps to use information about the road ahead of the vehicle.</p><p>Simulations show that significant energy savings can be obtained, especially during warm conditions and hilly roads. Compared to conventional fan controllers, energy consumption can be cut by up to three quarters. Moreover, this is possible without any hardware redesign.</p>
|
382 |
A computational model for resonantly coupled alpha free-piston Stirling CoolersAl-Hazmy, Majed Mualla H. 24 September 1998 (has links)
A computational model for a resonantly coupled alpha free-piston Stirling cooler
is presented. The cooler consists of two isothermal working spaces for compression and
expansion connected by a regenerator consisting of a stack of narrow parallel channels.
The regenerator is assumed to have a linear temperature distribution along its axial
direction and the working fluid is taken as an ideal gas. Control volume analysis is
adapted in this model, in which each of the components of the cooler is considered a
separate control volume. The compression piston is given a predetermined motion to
provide the work needed by the cooler. The expansion piston and the gas trapped
between the piston and the walls of the expansion cylinder are modeled as a mass,
spring, and damper system. The motion of the compression piston generates a pressure
difference across the cooler, and forces the working fluid to pass through the
regenerator. The expansion piston responds to the pressure in its space according to
Newton's second law of motion. The motion of the expansion piston is governed by the
forces originating from the pressure and the cold side gas spring and dash-pot. In this
way the dynamics of the moving pistons are coupled to the thermodynamics of the
cooler system.
A definition for the coefficient of performance (COP) that considers the heat
transfer by conduction through the material making up the regenerator is introduced.
This definition of the COP reflects the dependence of the cooler's performance on the
length of the regenerator. From a systematic variation of this regenerator length, an
optimal value can be found for a given set of operating parameters.
Conservation laws of mass, momentum and energy along with ideal gas
relations are used to form a set of equations fully describing the motion of the pistons
and the thermal state of the cooler. A marching-in-time technique with a Runge-Kutta
scheme of the fourth order is adapted to integrate the equation of motion. The plots of
the motion of the pistons, the pressure-volume diagrams of the workspaces and the COP
plots are provided to describe the cooler behavior. / Graduation date: 1999
|
383 |
Topography based fan control for heavy trucks / Topografibaserad kylfläktstyrning för tunga fordonLerede, Niclas January 2009 (has links)
This thesis is a study of how cooling fan control can be improved by using road topography information. Two such controllers are presented, one that uses information available in vehicles produced today, and one that combines GPS-information with digital topographic maps to use information about the road ahead of the vehicle. Simulations show that significant energy savings can be obtained, especially during warm conditions and hilly roads. Compared to conventional fan controllers, energy consumption can be cut by up to three quarters. Moreover, this is possible without any hardware redesign.
|
384 |
Potential for Absorption Cooling Generated from Municipal Solid Waste in Bangkok : A Comparison between Waste Incineration & Biogas Production with CombustionHedberg, Erika, Danielsson, Helén January 2010 (has links)
This master’s thesis has been performed in Bangkok, Thailand at the company Eco Design Consultant Co., Ltd. The aim is to investigate the possibilities to generate absorption cooling from municipal solid waste in the Bangkok area. The investigation includes a comparison between waste incineration and biogas production with combustion to see which alternative is preferable. During the investigation, a Swedish perspective has been used. The research for the report mainly consisted of published scientific articles from acknowledged sources as well as information from different Thai authorities. Also, experts within different areas were contacted and interviewed. In order to determine which of the two techniques (waste incineration or biogas production with combustion) that is best suited to generate absorption cooling, a model was designed. This model involved several parameters regarding e.g. plant efficiency, amount of treated waste and internal heat usage. As for the results of the model, three parameters were calculated: the generated cooling, the net electricity generation and the reduced greenhouse emissions. The overall Thai municipal solid waste generation in Thailand is estimated to approximately 15 million tons per year and the majority of the waste ends up at open dumps or landfills. There are only two to three waste incinerators in the country and a few projects with biogas generation from municipal solid waste. The main electricity is today generated from natural gas which makes the majority of the Thai electricity production fossil fuel based. As for absorption cooling, two applications of this technique has been found in Thailand during the research; one at the Naresuan University and one at the Suvarnabhumi airport in Bangkok. The model resulted in that the best alternative to power absorption cooling technique is waste incineration. This alternative has potential to generate 3200 GWh cooling per year and 1100 GWh electricity per year. Also, this alternative resulted in the largest decrease of greenhouse gas emissions, ‐500 000 tons per year. The model also showed that the same amounts of generated cooling and electricity can never be achieved from biogas production with combustion compared to waste incineration. Regardless, waste incineration has an important drawback: the citizens of Thailand seem to oppose further development of waste incineration in the country. The biogas technique seems more approved in Thailand, which benefits this alternative. Due to the high moisture and organic content in the municipal solid waste, a combination between the two waste handling alternatives is suggested. This way, the most energy can be withdrawn from the waste and the volume of disposed waste is minimized. Our overall conclusion is that the absorption cooling technique has great potential in Thailand. There is an increasing power‐ and cooling demand, absorption cooling generated from either or both of the alternatives can satisfy these demands while reducing greenhouse gas emissions. We also believes that the cost for using absorption cooling has to be lower than for the current compression cooling if the new technique is to be implemented further.
|
385 |
Design and analysis of a compact two phase cooling system for a laptop computerAli, Adya Alisha 13 July 2004 (has links)
Technological advancement, as well as consumer demands, has motivated the miniaturization of electronic/mechanical systems and increase of device power and performance. The notebook computer is not an exception, and innovative thermal management solutions must be employed to compensate for the increased heat dissipation in the space-constrained enclosures. The majority of current cooling systems in laptop computers rely on heat pipes attached to a remote heat exchanger with micro-fans providing forced convection to reject heat to the ambient, however this technique can not accommodate the increasing heat fluxes in the confined laptop enclosure.
In this study, a two-phase closed loop cooling system is designed and tested for a laptop computer. The cooling system consists of an evaporator structure containing boiling structures connected to a compact condenser with mini fans providing external forced convection. A pump is also incorporated to assist the return of the condensate back to the evaporator. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, initial system pressure, and pump flow rate on the thermal performance of the closed loop. Experimental data shows the optimum parametric values which can dissipate 25 W of chip power with a chip temperature maintained at 95C.
Numerical analysis provides additional data to further enhance the heat dissipation from the external air-cooled side of the condenser by studying the effects of ventilation and air flow rate across the system. Thermal management of mobile systems must be considered during the early design phases, and this research shows the feasibility of implementing of a two-phase cooling system to dissipate 25 W in a laptop computer.
|
386 |
Development of a Thin-Film Evaporative Cooling System for a High Energy Thulium Holmium: Lutetium Lithium Flouride Solid-State Laser Oscillator CrystalStewart, Brian K. 20 December 2004 (has links)
The feasibility and critical design parameters for the development of a thin-film evaporative cooling concept for a high energy, pulsed solid-state laser oscillator were investigated. The scope of the investigation was broad, and a multidisciplinary approach was employed. No contra-indicators for the feasibility of the proposed system were revealed.
A 1-dimensional two-fluid was developed to model the hydrodynamic flow and heat transfer assuming a constant wall heat flux. This analysis produced nominal pressure drops for the flow required, indicating nominal power will be required to transport fluid across the crystal surface.
Interfacial experiments reveal that the laser crystal material has a surface energy of approximately 30 mN/m, and is highly dispersive in nature.
Design rules to allow for the orthotropic thermal expansion of the crystal rod surrounded by a thin metal sleeve were developed to support the design of a hermetic crystal-metal seal. The results indicate that commercially pure nickel produces minimal joint stresses for large thermal excursions.
|
387 |
Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid FilmsNovak, Vladimir 11 April 2006 (has links)
An experimental and numerical investigation has been conducted to examine steady, internal, nozzle-generated, gas/liquid mist cooling in vertical channels with ultra-thin, evaporating subcooled liquid films. Interest in this research has been motivated by the need for a highly efficient cooling mechanism in high-power lasers for inertial fusion reactor applications. The aim is to quantify the effects of various operating and design parameters, viz. liquid atomization nozzle design (i.e. spray geometry, droplet size distribution, etc.), heat flux, liquid mass fraction, film thickness, carrier gas velocity, temperature, and humidity, injected liquid temperature, gas/liquid combinations, channel geometry, length, and wettability, and flow direction, on mist cooling effectiveness.
A fully-instrumented experimental test facility has been designed and constructed. The facility includes three cylindrical and two rectangular electrically-heated test sections with different unheated entry lengths. Water is used as the mist liquid with air, or helium, as the carrier gas. Three types of mist generating nozzles with significantly different spray characteristics are used. Numerous experiments have been conducted; local heat transfer coefficients along the channels are obtained for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficient by more than an order of magnitude compared to forced convection using only the carrier gas. The data obtained in this investigation will allow designers of mist-cooled high heat flux engineering systems to predict their performance over a wide range of design and operating parameters.
Comparison has been made between the data and predictions of a modified version of the KIVA-3V code, a mechanistic, three-dimensional computer program for internal, transient, dispersed two-phase flow applications. Good agreement has been obtained for downward mist flow at moderate heat fluxes; at high heat fluxes, the code underpredicts the local heat transfer coefficients and does not predict the onset of film rupture. For upward mist flow, the code underpredicts the local heat transfer coefficients and, contrary to experimental observations, predicts early dryout at the test section exit.
|
388 |
Design and Performance Analysis of a Miniature Spray Cooling SystemLu, Chin-Yuan 27 August 2012 (has links)
The aim of this study is to design and build a miniature spray cooling system, in which the manufactured and adopted chamber, pump and heat exchanger are smaller than the conventional ones. An experiment was conducted to explore the cooling performance of the spray cooling system after its size has been minimized. In the experiment, copper was used to make the heated surface and different working media, such as DI water, as nanofludics with silver and multi-walled carbon nanotubes
powder were sprayed on the heated surface to enhance the heat dissipation efficiency of the system. The experiment in this study was set according to two conditions: transient and steady state, with Weber number as the main parameter, to observe the boiling phenomenon of different working media on heated surface and to record the temperature changes of the heated surface. The results were shown in boiling curve and cooling curve. The ultimate goal of this study was to obtain a better understanding of the cooling performance of the miniature spray cooling system in order to apply it to micro-electronic cooling devices, thereby solving the problem of the sharp increase in heating power per unit area on electronic components.
|
389 |
Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat TransferMeador, Charles Michael 2010 December 1900 (has links)
Improvements to gas turbine efficiency depend closely on cooling technologies,
as efficiency increases with turbine inlet temperature. To aid in this process, simulations that consider real engine conditions need to be considered. The first step
towards this goal is a benchmark study using direct numerical simulations to consider
a single periodic film cooling hole that characterizes the error in adiabatic boundary
conditions, a common numerical simpliflication. Two cases are considered: an adiabatic case and a conjugate case. The adiabatic case is for validation to previous work
conducted by Pietrzyk and Peet. The conjugate case considers heat transfer in the
solid endwall in addition to the
fluid, eliminating any simplified boundary conditions.
It also includes an impinging jet and plenum, typical of actual endwall configurations.
The numerical solver is NEK5000 and the two cases were run at 504 and 128 processors for the adiabatic and conjugate cases respectively. The approximate combined
time is 100,000 CPU hours. In the adiabatic case, the results show good agreement
for average velocity profiles but over prediction of the film cooling effectiveness. A
convergence study suggests that there may be an area of unresolved flow, and the film cooling momentum flux may be too high. Preliminary conjugate results show
agreement with velocity profiles, and significant differences in cooling effectiveness.
Both cases will need to be refined near the cooling hole exit, and another convergence
study done. The results from this study will be used in a larger case that considers
an actual turbine vane and film cooling hole arrangement with real engine conditions.
|
390 |
Droplet Impingement Cooling Experiments on Nano-structured SurfacesLin, Yen-Po 2010 August 1900 (has links)
Spray cooling has proven to be efficient in managing thermal load in high power applications. Reliability of electronic products relies on the thermal management and understanding of heat transfer mechanisms including those related to spray cooling. However, to date, several of the key heat transfer mechanisms are still not well understood. An alternative approach for improving the heat transfer performance is to change the film dynamics through surface modification. The main goal of this study is to understand the effects of nano-scale features on flat heater surfaces subjected to spray cooling and to determine the major factors in droplet impingement cooling to estimate their effects in the spray cooling system. Single droplet stream and simultaneous triple droplet stream with two different stream spacings (500 μm and 2000 μm), experiments have been performed to understand the droplet-surface interactions relevant to spray cooling systems.
Experiments have been conducted on nano-structured surfaces as well as on flat (smooth) surfaces. It is observed that nano-structured surfaces result in lower minimum wall temperatures, better heat transfer performance, and more uniform temperature distribution. A new variable, effective thermal diameter (de), was defined based on the radial temperature profiles inside the impact zone to quantify the effects of the nano-structured surface in droplet cooling. Results indicate that larger effective cooling area can be achieved using nano-structured surface in the single droplet stream experiments. In triple stream experiments, nano-structured surface also showed an enhanced heat transfer. In single stream experiments, larger outer ring structures (i.e. larger outer diameters) in the impact crater were observed on the nano-structured surfaces which can be used to explain enhanced heat transfer performance. Smaller stream spacing in triple stream experiments reveal that the outer ring structure is disrupted resulting in lower heat transfer. Lower static contact angle on the nano-structured surface has been observed, which implies that changes in surface properties result in enhanced film dynamics and better heat transfer behavior. The results and conclusions of this study should be useful for understanding the physics of spray cooling and in the design of better spray cooling systems.
|
Page generated in 0.0627 seconds