• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1294
  • 456
  • 149
  • 128
  • 122
  • 109
  • 101
  • 42
  • 35
  • 35
  • 24
  • 17
  • 15
  • 14
  • 14
  • Tagged with
  • 2923
  • 436
  • 405
  • 312
  • 287
  • 225
  • 219
  • 210
  • 198
  • 191
  • 186
  • 185
  • 184
  • 180
  • 170
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Modeling and Performance Analysis of Relay-based Cooperative OFDMA Networks

Alam, Md Shamsul 07 October 2014 (has links)
Next generation wireless communication networks are expected to provide ubiquitous high data rate coverage and support heterogeneous wireless services with diverse quality-of-service (QoS) requirements. This translates into a heavy demand for the spectral resources. In order to meet these requirements, Orthogonal Frequency Division Multiple Access (OFDMA) has been regarded as a promising air-interface for the emerging fourth generation (4G) networks due to its capability to combat the channel impairments and support high data rate. In addition, OFDMA offers flexibility in radio resource allocation and provides multiuser diversity by allowing subcarriers to be shared among multiple users. One of the main challenges for the 4G networks is to achieve high throughput throughout the entire cell. Cooperative relaying is a very promising solution to tackle this problem as it provides throughput gains as well as coverage extension. The combination of OFDMA and cooperative relaying assures high throughput requirements, particularly for users at the cell edge. However, to fully exploit the benefits of relaying, efficient relay selection as well as resource allocation are critical in such kind of network when multiple users and multiple relays are considered. Moreover, the consideration of heterogeneous QoS requirements further complicate the optimal allocation of resources in a relay enhanced OFDMA network. Furthermore, the computational complexity and signalling overhead are also needed to be considered in the design of practical resource allocation schemes. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for relay-based cooperative OFDMA networks supporting heterogeneous QoS requirements. Specifically, this dissertation investigates how to effectively and efficiently allocate resources to satisfy QoS requirements of 4G users, improve spectrum utilization and reduce computational complexity at the base station. The problems and our research achievements are briefly outlined as follows. Firstly, a QoS aware optimal joint relay selection, power allocation and subcarrier assignment scheme for uplink OFDMA system considering heterogeneous services under a total power constraint is proposed. The relay selection, power allocation and subcarrier assignment problem is formulated as a joint optimization problem with the objective of maximizing the system throughput, which is solved by means of a two level dual decomposition and subgradient method. The computational complexity is finally reduced via the introduction of two suboptimal schemes. The performance of the proposed schemes is demonstrated through computer simulations based on OFDMA network. Numerical results show that our schemes support heterogeneous services while guaranteeing each user's QoS requirements with slight total system throughput degradation. Secondly, we investigate the resource allocation problem subject to the satisfaction of user QoS requirements and individual total power constraints of the users and relays. The throughput of each end-to-end link is modeled considering both the direct and relay links. Due to non-convex nature of the original resource allocation problem, the optimal solution is obtained by solving a relaxed problem via two level dual decomposition. Numerical results reveal that the proposed scheme is effective in provisioning QoS of each user's over the conventional resource allocation counterpart under individual total power constraints of the users and relays . Lastly, decentralized resource allocation schemes are proposed to reduce the computational complexity and CSI feedback overhead at the BS. A user centric distributed (UCD) scheme and a relay centric distributed (RCD) scheme are proposed, where the computation of the centralized scheme is distributed among the users and relays, respectively. We also proposed suboptimal schemes based on simplified relay selection. The suboptimal schemes can be combined with the distributed schemes to further reduce of signalling overhead and computational complexity. Numerical results show that our schemes guarantee user's satisfaction with low computational complexity and signalling overhead, leading to preferred candidates for practical implementation. The research results obtained in this dissertation can improve the resource utilization and QoS assurance of the emerging OFDMA networks.
322

Receiver Design and Performance Study for Amplify-and-Forward Cooperative Diversity Networks with Reduced CSI Requirement

LIU, PENG 25 June 2014 (has links)
This thesis aims to tackle the theoretical challenges of characterizing the fundamental performance limits of amplify-and-forward (AF) cooperative networks and to resolve the practical challenges in the receiver design for AF systems. First of all, we study the Shannon-theoretic channel capacity which serves as a benchmark for practical wireless communications systems. Specifically, we derive exact expressions of the ergodic capacity in a single-integral form for general multi-branch AF relay networks with/without the direct link (DL). Moreover, we derive closed-form and tight upper bounds on the ergodic capacity, which facilitate the evaluation of the ergodic capacity. These expressions provide useful theoretical tools for the design of practical wireless AF relaying systems. We then tackle the practical challenges involved in the design of AF receivers, aiming to substantially reduce the channel state information (CSI) signaling overhead yet achieving satisfactory error performance. We take the maximum-likelihood (ML) and generalized likelihood ratio test (GLRT) approaches to develop detectors under four typical wireless communications scenarios with little/no knowledge of the CSI. Firstly, for a semi-coherent scenario where only the product of channel coefficients of each relay branch is known, we develop the ML symbol-by-symbol (SBS) detector, which reduces the instantaneous CSI signaling overhead by 50% while achieving comparable performance to the ideal coherent receiver. Secondly, for the noncoherent scenario with only the (second-order) channel statistics and noise variances, we develop a noncoherent ML SBS detector for AF networks employing differential modulations. Thirdly, for AF networks with only the knowledge of the noise variance, we develop a sequence detector using GLRT. Lastly, for a completely blind scenario where the instantaneous CSI, channel statistics, and noise variances are all unknown, we develop a GLRT-based sequence detector. The proposed detectors achieve significant performance improvements over the state-of-the-art counterparts. The conducted theoretical analysis and practical design will facilitate the design of reliable communications over wireless AF networks with reduced CSI requirement. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2014-06-25 16:48:05.912
323

The supplemental service needs for specified school functions in selected Michigan school districts

Jones, David Lee January 1974 (has links)
The purpose of the study was to determine in the judgment of respondents what organizations have and should have the major responsibility for providing supplemental services to local Michigan school districts and if the need for the service was adequate in 1973.Three local kindergarten through twelfth-grade school districts were randomly selected from each of the functioning fifty-eight intermediate school districts. District data were gathered by means of a questionnaire mailed to the superintendents of the selected school districts. Ninety-five districts responded and were included in the statistical component of the study.The instrument used in the study listed fifty-six selected school functions for which local school districts might have a need for supplemental services from an external organization. Data were tallied at a state-wide level for each specified school function to indicate the percentage of represented districts receiving assistance from each organization, the percentage of responses which specified each organization as the organization which should be providing service, and the need for assistance beyond what was being received.Data concerning district needs were tabulated into three district enrollment categories with each category containing approximately the same number of represented districts. The category containing districts with the smallest enrollments ranged from 210 to 1,303 students. The category containing the middle size districts had student populations from 1,364 to 2,734 and the category containing the districts with the largest enrollments had student populations which ranged from 2,825 to 22,850.The state was also divided into five regions for data examination. The Upper Peninsula was designated Region 1 and in the Lower Peninsula the northwest was Region 2, the northeast Region 3, the southwest Region 4, and the southeast Region 5.Institutions of higher education were providing a limited amount of supplemental service for most school functions and were judged as being responsible for providing additional assistance for the school functions of recruitment of professional personnel and scholarship information. The intermediate school districts were the major supplier for a markedly smaller number of school functions than desired by respondents and tended to be assigned the responsibility of providing service for functions for which local school districts were not receiving assistance. School functions for which the State Department of Education was the major supplier of supplemental service tended to be the same functions for which respondents indicated the State Department should be the supplier.Computer related activities, assistance with personnel problems, and high school and post-high school vocational-technical programs were functions district representatives judged the intermediate school district as being responsible for additional service. Assistance with school functions involving finances and educational research were the responsibility of the State Department.All regions had a common need for additional supplemental service for some school functions but each region had major needs which were not duplicated for every school function examined. Representatives from districts with large enrollments tended to desire assistance for more school functions involving research and evaluation than districts with smaller enrollments.
324

Asynchronous bi-directional relay-assisted communication networks

Vahidnia, Reza 01 February 2014 (has links)
We consider an asynchronous bi-directional relay network, consisting of two singleantenna transceivers and multiple single-antenna relays, where the transceiver-relay paths are subject to different relaying and/or propagation delays. Such a network can be viewed as a multipath channel which can cause inter-symbol-interference (ISI) in the signals received by the two transceivers. Hence, we model such a communication scheme as a frequency selective multipath channel which produces ISI at the two transceivers, when the data rates are relatively high. We study both multi- and single-carrier communication schemes in such networks. In a multi-carrier communication scheme, to tackle ISI, the transceivers employ an orthogonal frequency division multiplexing (OFDM) scheme to diagonalize the end-to-end channel. The relays use simple amplify-and-forward relaying, thereby materializing a distributed beamformer. For such a scheme, we propose two different algorithms, based on the max-min fair design approach, to calculate the subcarrier power loading at the transceivers as well as the relay beamforming weights. In a single-carrier communication, assuming a block transmission/reception scheme, block channel equalization is used at the both transceivers to combat the inter-blockinterference (IBI). Assuming a limited total transmit power budget, we minimize the total mean squared error (MSE) of the estimated received signals at the both transceivers by optimally obtaining the transceivers??? powers and the relay beamforming weight vector as well as the block channel equalizers at the two transceivers.
325

Resource Allocation in Traditional and Cooperative Cognitive Radio Networks

Cui, Shaohang 06 September 2011 (has links)
Cognitive radio (CR) is a promising technique to improve spectrum efficiency for wireless communications. This thesis focuses on the resource allocation in two kinds of CR networks (CRNs), traditional CRNs (TCRNs) and cooperative CRNs (CCRNs). In TCRNs, CR sources and destinations communicate directly. By exploring the heterogeneity among CRs, a prioritized CSMA/CA is proposed for demand-matching spectrum allocation. A distributed game is formulated and no-regret learning is adopted to solve the game. Simulation results indicate increase on the number of satisfied CRs. In CCRNs, some nodes are selected as relays to assist the communication. A two-layer auction game is proposed with the first layer performing spectrum allocation and relay formation, and the second layer performing relay allocation. These two layers interact and jointly solve the resource allocation problem. Simulation results show that, compared to counterparts, both the network throughput and convergence time can be improved.
326

Synchronization in emerging wireless communication systems

Yao, Yuzhe 08 August 2012 (has links)
Synchronization is one of the most important issues in wireless communication systems design and implementation. The requirement for synchronization is going high as the signal bandwidth and the system complexity increases. For instance, the ultra-short pulse width in ultra-wideband (UWB) communication systems poses problems to the conventional timing synchronization methods and the multi-node transmission poses problems to the existing carrier frequency offset (CFO) synchronization methods. Moreover, the impact of imperfect synchronization in these systems on the system performance is more negative than that of the conventional communication systems. Therefore, efficient synchronization algorithms are really in need. This dissertation presents several synchronization methods aiming to either improve the synchronization performance or reduce the synchronization complexity. The focus of this dissertation is on UWB systems and cooperative systems. Both timing synchronization and carrier frequency synchronization problems have been investigated. Several different systems are considered, including the point to point block transmission based UWB communications, orthogonal frequency division multiplexing (OFDM) based one way and two way relaying communication systems and narrow band cooperative communication systems. For block transmission UWB systems, i.e., both OFDM and single carrier frequency domain equalization (SC-FDE) UWB systems, a new generic timing estimation method based on channel impulse response (CIR) estimation is proposed. The newly proposed method is superior to the existing methods not only in synchronization performance, but also in the algorithm complexity. For the multi-node cooperative communications, the CFO mitigation issue is studied with OFDM signaling. Due to the distributed nature of the cooperative system, the multiple CFO problem is inevitable and hard to solve. A two-step compensation scheme is designed to suppress the interference introduced by multiple CFO with low complexity. Moreover, timing synchronization in cooperative communications is studied, including the broadband OFDM based cooperative communication and the narrow band cooperative communication. A means of determining the optimal timing of the OFDM signal in asynchronous two way relay networks (TWRN) has been designed. A correlation based multi-delay estimation method is proposed for narrow band asynchronous cooperative communication systems. The synchronization issues covering both timing and carrier synchronization have been extensively studied in this dissertation. New synchronization methods have been proposed for the emerging transmission schemes such as high rate UWB transmission and the distributed cooperative transmission with challenges different from conventional wireless transmission schemes. / Graduate
327

The search for solidarity: the industrial and political roots of the Cooperative Commonwealth Federation in British Columbia, 1913-1928

Isitt, Ben 04 September 2013 (has links)
Born out of the industrial and political struggles of organized labour at the end of the First World War, the BC CCF was a product of organizational and ideological conflict in the 1910s and 1920s. This study explores the shift of BC socialism towards industrial action, which culminated in the One Big Union and the sympathetic strikes of 1919. It then examines the emergence of anti-Communism on the Left, shaped by the experience of political unity and disunity during the 1920s. These two factors fundamentally influenced the ideology and strategy adopted by the Cooperative Commonwealth Federation (CCF) in British Columbia. The ideological and tactical divisions of the 1930s were contested during the 1910s and 1920s. The collapse of the One Big Union, combined with deteriorating relations with the Communist Party, shifted BC socialists away from industrial militancy and toward parliamentary forms of struggle. / Graduate / 0334 / 0629 / 0511
328

Game theoretic distributed coordination: drifting environments and constrained communications

Lim, Yusun 12 January 2015 (has links)
The major objective of this dissertation is extending the capabilities of game theoretic distributed control to more general settings. In particular, we are interested in drifting environments and/or constrained communications. The first part of the dissertation concerns slowly varying dynamics, i.e., drifting environments. A standard assumption in game theoretic learning is a stationary environment, e.g., the game is fixed. We investigate the case of slow variations and show that for sufficiently slow time variations, the limiting behavior “tracks” the stochastically stable states. Since the analysis is regarding Markov processes, the results could be applied to various game theoretic learning rules. In this research, the results were applied to log-linear learning. A mobile sensor coverage example was tested in both simulation and laboratory experiments. The second part considers a problem of coordinating team players' actions without any communications in team-based zero-sum games. Generally, some global signalling devices are required for common randomness between players, but communications are very limited or impossible in many practical applications. Instead of learning a one-shot strategy, we let players coordinate a periodic sequence of deterministic actions and put an assumption on opponent's rationality. Since team players' action sequences are periodic and deterministic, common randomness is no longer required to coordinate players. It is proved that if a length of a periodic action sequence is long enough, then opponents with limited rationality cannot recognize its pattern. Because the opponents cannot recognize that the players are playing deterministic actions, the players' behavior looks like a correlated and randomized joint strategy with empirical distribution of their action sequences. Consequently players can coordinate their action sequences without any communications or global signals, and the resulting action sequences have correlated behavior. Moreover, the notion of micro-players are introduced for efficient learning of long action sequences. Micro-player matching approach provides a new framework that converts the original team-based zero-sum game to a game between micro-players. By introducing a de Bruijn sequence to micro-player matching, we successfully separate the level of opponent's rationality and the size of the game of micro-players. The simulation results are shown to demonstrate the performance of micro-player matching methods. Lastly, the results of the previous two topics are combined by considering a problem of coordinating actions without communications in drifting environments. More specifically, it is assumed that the opponent player in the team-based zero-sum games tries to adjust its strategy in the set of bounded recall strategies. Then the time-varying opponent's strategy can be considered as a dynamic environment parameter in a coordination game between the team players. Additionally, we develop a human testbed program for further study regarding a human as an adaptive opponent in the team-based zero-sum games. The developed human testbed program can be a starting point for studying game theoretic correlated behavior learning against a human.
329

Investigations of collaborative design environments : a framework for real-time collaborative 3D CAD

Nam, Tek-Jin January 2001 (has links)
This research investigates computer-based collaborative design environments, in particular issues of real-time collaborative 3D CAD. The thesis first presents a broad perspective of collaborative design environments with a preliminary case study of team design activities in a conventional and a computer mediated setting. This study identifies the impact and the feasibility of computer support for collaborative design and suggests four kinds of essential technologies for a successful collaborative design environment: information-sharing systems, synchronous and asynchronous co- working tools, project management systems, and communication systems. A new conceptual framework for a real-time collaborative 3D design tool, Shared Stage, is proposed based upon the preliminary study. The Shared Stage is defined as a shared 3D design workspace aiming to smoothly incorporate shared 3D workspaces into existing individual 3D workspaces. The addition of a Shared Stage allows collaborating designers to interact in real-time and to have a dynamic and interactive exchange of intermediate 3D design data. The acceptability of collaborative features is maximised by maintaining consistency of the user interface between 3D CAD systems. The framework is subsequently implemented as a software prototype using a new software development environment, customised by integrating related real-time and 3D graphic software development tools. Two main components of the Shared Stage module in the prototype, the Synchronised Stage View (SSV) and the Data Structure Diagram (DSD), provide essential collaborative features for real-time collaborative 3D CAD. These features include synchronised shared 3D representation, dynamic data exchange and awareness support in 3D workspaces. The software prototype is subsequently evaluated to examine the usefulness and usability. A range of quantitative and qualitative methods is used to evaluate the impact of the Shared Stage. The results, including the analysis of collaborative interactions and user perception, illustrate that the Shared Stage is a feasible and valuable addition for real-time collaborative 3D CAD. This research identifies the issues to be addressed for collaborative design environments and also provides a new framework and development strategy of a novel real-time collaborative 3D CAD system. The framework is successfully demonstrated through prototype implementation and an analytical usability evaluation.
330

Design and Performance Analysis of Efficient Cooperative Wireless Communication Systems

Altubaishi, Essam Saleh 10 August 2012 (has links)
Cooperative communication has recently become a key technology for modern wireless networks such as 3GPP long-term evolution and WiMAX, because in such networks the transmission rate, the communication reliability, and coverage problems could be improved in a cost-effective manner. This, however, faces many design challenges. First, cooperative transmission typically involves a relaying phase which requires extra resources. This may cause a reduction in the spectral efficiency. Second, extra control signaling increases the complexity of operation, which may limit practical implementation. In addition, a wireless channel is time-varying, mainly due to the multipath propagation. As a result, a careful design of efficient cooperative communication systems is required, not only to enhance the spectral efficiency and maintain the quality-of-service (QoS), but also to be practical. In this dissertation, we aim to address the challenges imposed by cooperative communication and wireless transmission, and design the efficient and distributed systems which can be practically implemented in existing wireless systems. The research work is divided into two main topics: 1) adaptive cooperative wireless systems with variable-rate transmission, and 2) cooperative wireless systems with a power consumption constraint. The first topic investigates how the spectral efficiency of cooperative wireless communication systems can be improved while maintaining the QoS in terms of bit error rate and outage probability. The spectral efficiency enhancement is achieved by using three techniques: adaptivity over the relay node (i.e., relay node is active or not), adaptivity over the modulation mode, and relay selection. Based on that, we propose several adaptive cooperative schemes for both the decode-and-forward (DF) and amplify-and-forward (AF) protocols. To evaluate these schemes, we provide performance analysis in terms of average spectral efficiency, average bit error rate (ABER), and outage probability over Rayleigh fading channels. We start with the single-relay cooperative system using DF protocol, in which two adaptive cooperative schemes with variable-rate transmission are proposed. The first scheme, called the minimum error rate scheme (MERS), aims to exploit the transmit diversity to improve the bit error rate. By trading the multiplexing gain against the diversity gain, we propose the second scheme, called the maximum spectral efficiency scheme (MSES), in which cooperative transmission is avoided whenever it is not beneficial. The MERS improves the ABER significantly and achieves equal or better average spectral efficiency compared to the fixed (i.e., non-adaptive) relaying scheme. In contrast, the MSES provides the best average spectral efficiency due to its ability to not only adapt to the channel variation but also to switch between cooperative and non-cooperative transmissions. To further increase the spectral efficiency, we then propose the third scheme, called variable-rate based relay selection (VRRS) scheme, in which a relay node is selected from among the available relay nodes, based on a predefined criterion. Furthermore, we propose two AF adaptive cooperative schemes, mainly to enhance the spectral efficiency. In the first scheme, we introduce a generalized switching policy (GSP) for a single-relay cooperative wireless system that exploits the variable-rate transmission and useful cooperative regions. The second scheme, called the AF efficient relay selection (AFERS) scheme, extends the GSP to also consider the relay selection technique. Analytical and simulation results verify that the AFERS scheme not only outperforms conventional direct transmission in terms of the average spectral efficiency, but also the AF fixed relaying and the outage-based AF adaptive cooperative scheme. The second topic investigates the fair power consumption of the relay nodes for AF cooperative wireless communication systems. The fairness is defined as to achieve equal power consumption over the relay nodes. We focus on how the relay selection process can be controlled in a distributed manner so that the power consumption of the relay nodes can be included in relay selection. We first introduce a simple closed-form expression for the weight coefficient used in order to achieve the considered fairness that depends only on the local average channel conditions of the relay path. We then derive closed-form expressions of the weighted outage probability and ABER and show that our proposed strategy not only has less complexity than the conventional centralized one but also provides better accuracy in distributing the total consumed power equally among the relay nodes without affecting the performance.

Page generated in 0.4946 seconds