• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La formation de traces mnésiques olfactives dans le cortex piriforme de la souris / The encoding of olfactory memory traces in the mouse piriform cortex

Meissner-Bernard, Claire 20 September 2017 (has links)
Comment les souvenirs olfactifs sont-ils stockés dans notre cerveau? Plusieurs études suggèrent que le cortex olfactif (piriforme) jouerait un rôle important dans la mémoire olfactive. J'ai donc voulu déterminer si cette région du cerveau est impliquée dans le rappel d'un souvenir olfactif. Pour cela, j'ai manipulé l'activité des neurones du cortex piriforme ayant été actifs pendant un apprentissage olfactif aversif, en utilisant cfos comme marqueur d'activation neuronale. Plus précisément, j'ai choisi de travailler avec la lignée de souris transgénique cfos-tTA (et de manière moins développée avec la lignée fosCreERT2) et d'utiliser les récepteurs "DREADDs". J'ai montré que lors du test de mémoire, l'inactivation des neurones du cortex piriforme actifs pendant l'apprentissage rend la souris amnésique. De manière réciproque, la réactivation artificielle de ces neurones récupère le souvenir de l'association odeur-stimulus aversif. Ainsi, une trace mnésique se forme au niveau du cortex piriforme, et plus précisément au niveau des neurones actifs lors de l'apprentissage. Ce résultat ouvre la voie à de nombreux champ d'investigations pour mieux comprendre les mécanismes de la mémoire. J'ai choisi d'explorer de manière préliminaire l'effet de l'apprentissage sur la représentation des odeurs au niveau du cortex piriforme. En parallèle, en utilisant une approche théorique, j'ai étudié si un modèle basé sur les variations de potentiel de membrane dendritique pouvait prédire l'occurrence d'un type de plasticité à une synapse corticale. L'ensemble de ces travaux ont permis d'accroître nos connaissances sur le fonctionnement de la mémoire olfactive. / Olfaction is an evolutionarily old sensory modality that plays key roles in the survival of many species and is densely interwoven with memory and emotions. However, how odor memories are formed and stored in the brain remains largely unknown. To address these questions, we studied the olfactory (piriform) cortex of mice, which is a good candidate for encoding olfactory memory traces. We used c-fos as a marker of neural activity and the cfos-tTA transgenic mouse line (and the fosCreERT2 mouse line to a lesser extent) to selectively express chemogenetic receptors (DREADDs) in piriform neurons that are active during an olfactory fear conditioning task. We found that chemogenetically reactivating these ensembles artificially retrieves the memory while chemogenetically silencing them impairs memory retrieval. Piriform neurons active during olfactory learning thus play a key role in memory retrieval. These results open new horizons in understanding memory trace formation. We decided to explore in a preliminary way how learning shapes piriform network properties. In parallel, using a theoretical framework, we investigated if a model based on dendritic voltage could predict synaptic plasticity. Taken together, these experiments will provide important insights into the mechanisms of odor coding and memory.
2

Ectonucléotidases, adénosine et transmission synaptique / Ectonucleotidases, adenosine and synaptic transmission

Gleizes, Marie 22 November 2017 (has links)
Dans le cerveau, les fonctions de la phosphatase alcaline non spécifique des tissus (TNAP) ne sont pas clairement identifiées. La localisation et l'expression de cette enzyme au niveau neuronal suggère cependant, qu'elle joue un rôle important dans le développement et le fonctionnement du cerveau. Cela est supporté par la présence de graves crises d'épilepsie chez les humains porteurs d'une mutation de la TNAP. Ces crises d'épilepsie sont létales chez les souris KO pour la TNAP. Des études chez la souris montrent que la TNAP pourrait réguler l'inhibition postsynaptique médiée par le GABA et elle pourrait être impliquée dans l'inhibition présynaptique médiée par l'adénosine. L'adénosine est, en partie, synthétisée via la déphosphorylation successive de l'ATP en ADP puis en AMP par des ectonucléotidases. Parmi elles, la TNAP et l'ecto- 5'-nucléotidase (NT5E) catalysent l'hydrolyse de l'AMP en adénosine dans le cortex cérébral. L'adénosine agit principalement au niveau présynaptique par l'intermédiaire des récepteurs A1. Ainsi l'adénosine a une influence sur la transmission synaptique et sur la plasticité synaptique. Ceci pourrait expliquer, en partie, les crises d'épilepsie observées chez les souris KO pour la TNAP. Les deux objectifs principaux de ma thèse ont été : (1) évaluer la contribution de la TNAP dans la production d'adénosine dans le cerveau ; (2) étudier l'influence de l'adénosine sur la plasticité synaptique. Premièrement, l'étude de la contribution de la TNAP dans la production d'adénosine dans le cerveau a été réalisée au moyen de deux approches complémentaires. Une approche métabolomique (spectroscopie RMN du proton) sur des cerveaux entiers de souris KO pour la TNAP a permis de montrer que la TNAP participe, entre autre, à la synthèse d'adénosine dans le cerveau. Une deuxième approche, électrophysiologique sur tranches de cerveaux de souris in vitro, nous permet d'examiner les conséquences de l'inhibition des ectonucléotidases intervenant dans la synthèse de l'adénosine. Elle a révélé que l'inhibition des ectonucléotidases (TNAP et NT5E) ne supprime pas l'effet inhibiteur de l'AMP médiée par les récepteurs A1. Deuxièmement, nous avons étudié l'influence de l'adénosine sur la plasticité synaptique à courte terme. Nous avons enregistré des potentiels de champs dans la couche Ia du cortex piriforme en réponse à des stimulations électriques (3,125 à 100 Hz) présentée avec des fréquences recouvrant la gamme d'oscillations physiologiques. Nos résultats montrent qu'avec de fortes concentrations d'adénosine, la facilitation est accentuée par rapport à celle observée en situation contrôle. Cet effet est observé pour des fréquences supérieures ou égales à 25 Hz. De plus, cette accentuation est d'autant plus grande que la fréquence est élevée (maximum atteint à 100 Hz pour 100 µM). En bloquant l'action de l'adénosine endogène, l'effet contraire est observé : une facilitation déficitaire par rapport au contrôle et dont le défaut est croissant avec la fréquence de stimulation. Tous ces résultats convergent vers l'hypothèse qu'une déficience en TNAP, traduite par une absence d'adénosine, pourrait contribuer au maintien des processus épileptiques générés par un déséquilibre de l'inhibition et de l'excitation dû à une diminution de GABA. L'effet inhibiteur de l'AMP médié par les récepteurs A1 ne serait pas suffisant pour contrecarrer les crises d'épilepsie observées chez les sujets hypophosphatasiques et les souris KO pour la TNAP. / The functions of Tissue Nonspecific Alkaline Phosphatase (TNAP) in the brain are not clearly identified. The localization and expression of TNAP at the neuronal level, however, suggests that it plays a prominent role in the development and the function in the brain. This is supported by the presence of severe epileptic seizures in humans carrying TNAP mutation. These epileptic seizures are lethal in TNAP KO mice. Studies in mice show that TNAP could regulate GABA-mediated postsynaptic inhibition and may be involved in presynaptic inhibition mediated by adenosine. Adenosine is, partly, synthesized via the successive dephosphorylation of ATP to ADP and then to AMP by ectonucleotidases. Among them TNAP and ecto-5'-nucleotidase (NT5E) are able to hydrolyze AMP into adenosine. Adenosine acts mainly at the presynaptic level via A1 receptors activation. Adenosine has an influence on synaptic transmission and thus on synaptic plasticity. This could partly explain the epileptic seizures observed in TNAP knock-out mice. The two main purposes of my thesis were: (1) to evaluate the contribution of TNAP in adenosine production in the brain; (2) to study the influence of adenosine on synaptic plasticity. Firstly, the study of the contribution of TNAP in adenosine production in the brain was carried out using two complementary approaches. A metabolomic approach (proton NMR spectroscopy) on whole brains of TNAP KO mice showed that TNAP in involved in adenosine synthesis in the brain. In a second approach, in vitro electrophysiological recordings on mouse brain slices allowed us to examine the consequences of the inhibition of the ectonucleotidases involved in adenosine synthesis. This revealed that inhibition of ectonucleotidases (TNAP and NT5E) did not suppress the inhibitory effect of AMP mediated by A1 receptors. Secondly, we studied the influence of adenosine on short-term synaptic plasticity. Field potentials were recorded in response to electrical stimulations (3.125 to 100 Hz) applied with frequencies encompassing the range of physiological oscillation. Our results show that, with high adenosine concentrations, the facilitation is emphasized compared to that observed in the control situation. This effect is observed for frequencies greater than or equal to 25 Hz. In addition, the higher the frequency, the greater the facilitation. Finally, by blocking the action of endogenous adenosine, the opposite effect was observed: a deficient facilitation with respect to the control, whose defect was increasing with stimulation frequency. All these results converge towards the hypothesis that TNAP deficiency, expressed by absence of adenosine, could contribute to the maintenance of the epileptic processes generated by an imbalance of the neuronal inhibition and the excitation due to a decrease of GABA. AMP inhibitory effect mediated by A1 receptors, would not be sufficient to counteract epileptic seizures observed in hypophosphatasic patients and TNAP KO mice.
3

Développement du cortex piriforme et de la commissure antérieure : implication de la protéine SCHIP-1 / Piriform cortex and anterior commissure development : role of SCHIP-1 protein

Klingler, Esther 26 September 2014 (has links)
SCHIP-1 est une protéine cytoplasmique enrichie aux nœuds de Ranvier et aux segments initiaux des axones matures, où elle est associée à l’ankyrine G. SCHIP-1 est également exprimée dans le système nerveux central pendant le développement embryonnaire. Nous montrons ici que les souris mutées pour Schip1 présentent des anomalies morphologiques de la commissure antérieure formée par les axones du cortex piriforme, du noyau olfactif antérieur et de l’amygdale. Ces anomalies résultent de défauts de croissance et de guidage axonal in vivo au cours du développement. Les neurones du cortex piriforme d’embryons mutés présentent un retard d’initiation et de croissance axonales, et des anomalies de guidage axonal in vitro. Des expériences de vidéomicroscopie montrent que SCHIP-1 régule la réponse des cônes de croissance à la molécule de guidage EphB2, importante pour le développement de la commissure antérieure. Les souris mutées présentent en outre une diminution de l’épaisseur du cortex piriforme qui affecte spécifiquement les couches de neurones de projection. Cette diminution résulterait d’une augmentation de la mort cellulaire et non d’un défaut de génération ou de migration des neurones. De manière intéressante, ces anomalies morphologiques sont associées à des comportements anormaux qui pourraient reposer sur des défauts d’intégration des odeurs. Le cortex piriforme joue un rôle-clé dans la discrimination, l’association et l’apprentissage des odeurs. Les souris mutées pour Schip1 semblent donc être un modèle prometteur pour étudier la fonction du cortex piriforme ainsi que celle de la commissure antérieure, peu connues à ce jour. / SCHIP-1 is a cytoplasmic component of nodes of Ranvier and axon initial segments of mature axons, where it associates with ankyrinG. SCHIP-1 is also expressed in the CNS during mouse early embryonic stages. Here we report that Schip1 mutant mice display morphological abnormalities of the anterior commissure, which is composed of axons from piriform cortex, anterior olfactory nucleus, and amygdala. These abnormalities are due to impaired axon elongation and navigation in vivo during development. Piriform cortex neurons display axon initiation/outgrowth delay and guidance defects in vitro. Time-lapse imaging indicates that SCHIP-1 regulates the response of growth cones to EphB2, a guidance cue important for anterior commissure development. Besides, mutant mice display a reduced thickness of the piriform cortex, which affects projection neuron layers, and is likely to result from cell death rather than from impairment of pyramidal neuron generation or migration. Interestingly these morphological defects are associated with abnormal behavior related to defects in odor processing. The piriform cortex is thought to play a key role in odor discrimination, association and learning. Thus Schip1 mutant mice appear to be an interesting model to further characterize piriform cortex as well as anterior commissure functions, which are yet poorly known.
4

Recent and remote episodic-like memory : characteristics and circuits : approach via multi-site recordings of oscillatory activity in rat hippocampal and cortical brain regions / Mémoire épisodique récente et ancienne : caractéristiques et circuits

Allerborn, Marina 04 November 2016 (has links)
La mémoire épisodique, notre capacité de se rappeler des épisodes particuliers de notre vie, a été initialement définie chez l'homme en termes de l'information qu'elle contient, quel événement a eu lieu, où et dans quel contexte /quand s'est-il produit? La démonstration de l'existence de cette forme de mémoire chez l'animal a été réalisée chez le geais buissonnier. En effet, cet oiseau cacheur est capable de former une représentation mentale complexe du type de nourriture qu'il a caché, où et quand. Cette forme de mémoire qualifiée d' « episodic-like » a depuis une dizaine d'année été établie chez le rongeur. Au cours de ma thèse, j'ai suivi deux objectifs: valider un nouveau paradigme de mémoire épisodique chez le rat et l'utiliser pour étudier les circuits neuronaux qui sous-tendent cette forme particulière de mémoire. La première partie du manuscrit présente le développement et la validation d'un protocole original destiné à l'étude de la mémoire épisodique chez le rat. Lors de la conception de cette tâche, nous avons essayé de réduire au minimum la procédure d'entrainement des animaux afin de préserver l'essence même de la mémoire épisodique qui est la mémoire d'épisodes uniques. Pendant la tâche les rats ont été exposés à deux épisodes différents, au cours desquels des combinaisons uniques odeurs-place (information « quoi et où ») ont été présentées dans des contextes différents enrichis et multi-sensoriels (information « dans quel contexte »). Nous avons démontré que certains rats («ww») étaient capables de former des associations de mémoire (« episodic-like ») qui leur permettent de se souvenir de l'intégralité de l'épisode présenté après des délais courts (24h) et longs (24 jours) et dans différentes situations de rappel, tandis que d'autres («rest») ne se souvenaient que partiellement des informations présentes lors de l'épisode. Une approche pharmacologique réalisée lors de la validation de la tâche nous a permis de confirmer que l'hippocampe dorsal était nécessaire au rappel épisodique complet. Dans une version étendue du protocole dans laquelle des rats ont été exposés à deux épisodes supplémentaires, nous avons trouvé que l'expérience des épisodes préalablement acquis par les rats facilite l'encodage de nouveaux épisodes et que la mémoire de ces épisodes est plus stable. La deuxième partie de la thèse présente une première approche de l'étude des circuits neuronaux sous tendant la formation et la récupération de la mémoire épisodique. L'approche méthodologique utilisée est l'enregistrement multi-site de potentiels de champs locaux chez l'animal vigile. Le réseau de structures enregistrées inclut les aires sensorielles olfactives, des régions du cortex préfrontal médian et latéral ainsi que les régions dorsales et ventrales de l'hippocampe. Après avoir extrait des signaux le contenu fréquentiel dans deux bandes de fréquences (béta et théta), nous avons analysé les variations de puissance de l'activité oscillatoire dans ces bandes en utilisant des analyses en transformées de Hilbert et ondelette de Morlet. La période d'analyse est centrée sur l'échantillonnage de l'odeur, dernière information traitée avant que l'animal produise sa réponse comportementale. Les changements de puissance dans les deux bandes en réponse à l'odeur ont été comparés dans les différentes situations expérimentales pour les rats «ww» et les rats «rest». Les résultats obtenus montrent que le réseau de structures activées dans la bande béta en réponse à l'odeur est différent en fonction du profil de rappel des animaux (les rats du profil «ww» versus les rats «rest») à la fois en encodage et en situation de rappel. L'activité dans le réseau est également différente en fonction du type de réponse (hit versus rejet correct) / Episodic memory, our capacity to recollect particular life episodes, has been initially defined in terms of the information it contains, what kind of event, where and in which context/when did it take place. Pioneering studies on food-caching birds have demonstrated that animals are also able to form such complex memories, referred to as episodic-like memories in animals, however its modelling in rodents has proved challenging. The aim of this thesis was twofold: further development and validation in rats of a new episodic-like memory paradigm and study of neural circuits involved in formation and retrieval of this particular memory. The first part of the thesis presents the original behavioral paradigm developed in our group. In our task we tried to minimize training procedure in order to preserve the nature of episodic memory which is the memory for unique life episodes. Hereby rats were exposed to two different episodes, during which unique odor-place combinations (“what and where” information) were presented in different enriched multisensory contexts (“in which context” information). We found that some rats (“ww” group) were indeed able to form episodic-like memory associations which can be recalled after short (24 h) and long delays (24 days) in different experimental situations, while other animals (“rest” group) remembered only parts of the information contained in the initial episodes. Using pharmacological inactivation of dorsal hippocampus we have demonstrated that hippocampus is required specifically for retrieval of associated episodic-like memory information, but not for retrieval of single elements of the presented episodes in our task. In an extended version of the protocol in which rats were exposed to two additional episodes we found that previously acquired experience of the rats facilitates the encoding of new episodes and that the memory of these new episodes is more stable. The second part of the manuscript presents the first approach to study neural circuits involved in episodic-like memory encoding and retrieval in our task. Electrophysiological methodology was based on local field potential recordings obtained in parallel in several brain regions in behaving animals. The network of structures investigated included olfactory neocortical brain areas, brain regions in lateral and medial prefrontal cortex and the dorsal and ventral part of the hippocampus. The analysis was based on the estimation of magnitude of the oscillatory activity (described as power changes) in theta and beta frequency bands using Hilbert and Morlet wavelet transform for the analyses. The power analysis evolved around odor sampling event which constituted the last piece of information required for recollection of the whole episodic-like memory association. The odor-induced changes in power were compared between “ww” and “rest” animals in different experimental situations. We found that the network of activated brain regions in beta frequency band differed as a function of the memory profile of the rats (complete episodic-like memory recollection versus remembering partial information of the episodes) during both memory encoding as well as retrieval. We have also demonstrated that this active network changes when memory becomes consolidated (recent versus remote memory). Additionally we have shown that the activity in the network depends on the type of the response (hit versus correct rejection) given by the rat during memory encoding and retrieval. The network of brain regions that showed changes in theta power during memory formation and retrieval differed strongly from beta band network. In contrast to beta, the memory profile effect was much less prominent for theta band. However similarly to beta, there were also significant changes in network depending on the encoding session and the age of memory at test

Page generated in 0.0642 seconds