• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 859
  • 280
  • 212
  • 47
  • 33
  • 23
  • 18
  • 15
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1762
  • 658
  • 481
  • 417
  • 293
  • 275
  • 272
  • 268
  • 262
  • 257
  • 248
  • 221
  • 209
  • 185
  • 182
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Cosmic Acceleration As Quantum Gravity Phenomenology

Prescod-Weinstein, Chanda Rosalyn Sojourner January 2010 (has links)
The discovery of cosmic acceleration has prompted the need for a new understanding of cosmology. The presence of this acceleration is often described as the dark energy problem or the Lambda problem.The simplest explanation is that the acceleration is due to addition of a cosmological constant to Einstein's equation, but this resolution is unsatisfactory as it leaves several unanswered questions. Although General Relativity has been tested in the strong-field limit, the apparent dark energy may be urging us to consider experimental cosmology as such a test for large scales. In this vein, I have pursued a study of modifications to Einstein's gravity as well as possible related quantum gravity phenomenology. Not only must the details of modified gravities be worked out, but their impact on other astrophysics must be checked. For example, structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement the Press & Schechter formalism. I explore the potential for universality in the Press & Schechter formalism and what dark matter haloes may be able to tell us about cosmology.
322

Cosmic Acceleration As Quantum Gravity Phenomenology

Prescod-Weinstein, Chanda Rosalyn Sojourner January 2010 (has links)
The discovery of cosmic acceleration has prompted the need for a new understanding of cosmology. The presence of this acceleration is often described as the dark energy problem or the Lambda problem.The simplest explanation is that the acceleration is due to addition of a cosmological constant to Einstein's equation, but this resolution is unsatisfactory as it leaves several unanswered questions. Although General Relativity has been tested in the strong-field limit, the apparent dark energy may be urging us to consider experimental cosmology as such a test for large scales. In this vein, I have pursued a study of modifications to Einstein's gravity as well as possible related quantum gravity phenomenology. Not only must the details of modified gravities be worked out, but their impact on other astrophysics must be checked. For example, structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement the Press & Schechter formalism. I explore the potential for universality in the Press & Schechter formalism and what dark matter haloes may be able to tell us about cosmology.
323

Protostar formation in the early universe

Yoshida, Naoki 01 1900 (has links)
No description available.
324

The body, the world, and soteriology in early Daoism /

Michael, Thomas. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Faculty of the Divinity School, June 2001. / Includes bibliographical references. Also available on the Internet.
325

Galaxy clusters and cosmology with the Sunyaev-Zel'dovich effect and weak lensing /

Holder, Gilbert Patrick. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Astronomy and Astrophysics, 2001. / Includes bibliographical references. Also available on the Internet.
326

Constraining compact dark matter with quasar equivalent widths from the Sloan Digital Sky Survey Early data release /

Wiegert, Craig Charles. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, August 2003. / Includes bibliographical references. Also available on the Internet.
327

Les populations stellaires des galaxies naines elliptiques / Stellar populations in dwarf elliptical galaxies

Koleva, Mina V. 22 January 2009 (has links)
Le passé des galaxies est inscrit dans leurs populations stellaires. Les galaxies les plus nombreuses sont les naines elliptiques (dEs), survivantes de la construction hiérarchique des structures. Par conséquent, l’évolution de l’Univers peut être lue dans les populations de ces galaxies. Dans cette thèse, je présente et je valide une méthode efficace et précise pour étudier l’histoire de la formation stellaire et de l’enrichissement en métaux des systèmes stellaires en se servant de spectres intégrés le long de la ligne de visée. La méthode a été testée de manière extensive avec des spectres de 40 amas globulaires Galactiques et elle a été appliquée à un échantillon de 16 galaxies elliptiques naines d’amas et de groupes et à NGC 205. La comparaison entre les mesures des spectres intégrés et celles obtenues au moyen de diagrammes couleur-magnitude et de spectroscopie d’étoiles résolues montrent que: (1) Les mesures de métallicité faites sur des spectres intégrés ont une précision de 0.15 dex; (2) Les modèles spectroscopiques doivent être améliorés afin de prendre en compte les branches horizontales bleues et les vagabonds bleus, mais nous avons résolu ce problème en ajoutant des étoiles bleues ad hoc ; (3) Les différents modèles de spectres de population sont tr`es comparables du moment qu’ils utilisent des grandes bibliothèques stellaires. Encouragée, et rassurée, par les bons résultats j’ai étudié les populations de galaxies observées avec FORS au VLT. Les résultats les plus marquant sont: (1) Les premières étoiles des galaxies naines se sont formées dans l’Univers précoce (elles sont contemporaines des vieilles étoiles des amas globulaires) et la formation des galaxies naines est compatible avec le scenario de down-sizing pour la formation des galaxies. 40% de la masse stellaire des dEs s’est formée avant z=1; (2) les galaxies naines présentent généralement un gradient décroissant de la métallicité du centre vers l’extérieur. La métallicité décroit typiquement de 0.5 dex dans un rayon effectif. Ces gradients existent déjà dans la population vieille. Les simulations numériques les prédisent mais requièrent un temps plus long pour les établir, et les nouvelles observations vont permettre d’améliorer les modèles. L’étude de NGC 205, galaxie du Groupe Local de masse comparable, indique les mêmes caractéristiques, qui donc ne dépendent pas de l’environnement / The past of the galaxies is imprinted in their stellar populations. The most numerous galaxies in the Universe are the dwarf ellipticals (dEs), left-over of the hierarchical mass-assembly. Consequently, the evolution of the Universe can be read from the stellar populations of the dwarf elliptical galaxies. In this thesis I present and validate an accurate and efficient method to study the age and metallicity evolution in stellar systems using spectra integrated along the line-ofsight. It was extensively tested and validated on a library of 40 Galactic globular clusters and applied to a sample of 16 dwarf elliptical galaxies in cluster and group environments and to NGC 205. The comparison between the integrated light measurement and CMD estimates of the clusters age and metallicity shows that : (1) The metallicity estimations of the old stellar populations are accurate up to 0.15 dex ; (2) the models have to be improved to account for the blue-horizontal branchs and the blue stragglers stars, but this problem can be presently solved by adding ad’hoc blue stars to the models ; (3) the different synthesis models give similar results providing large libraries are used for the synthesis. Further, encouraged by the good results, I applied the full spectrum fitting to dwarf elliptical galaxies observed with FORS at the VLT. The most striking results are : (1) The small galaxies start to form stars in the early Universe (at similar ages like the ages of Galactic globular clusters) and their star formation history is in agreement with the down-sizing scenario of galaxy evolution. 40% of the stellar mass of dEs was formed before z=1 ; (2) The dwarf ellipticals have in general decreasing metallicity from the centre by typically 0.5 dex in one halflight radius. These gradients are already present in the old population. The numerical simulations predict them, but need a longer time to construct them. The new observations will allow to improve the models. The study of NGC 205, galaxy of the Local Group of a similar mass, indicate similar characteristics, suggesting that they do not depend on the environment
328

Inflation : connecting theory to observation

Meyers, Joel Ray, 1983- 23 October 2012 (has links)
The inflationary paradigm has become widely accepted as an accurate framework in which to describe the physics of the early universe, due both to the conceptual advantages of the idea and the agreement of its predictions with observational data. However, it remains to be determined which of the many detailed theories of inflation correctly describe the universe in which we live. Any such theory faces the challenge of making accurate predictions which agree with observation while also fitting consistently into a theory of high energy physics. Within this challenge there exists the great opportunity to constrain speculative models of fundamental physics. Inflation thereby provides an observational window into theories conventionally thought to be unreachable by experiment. Measurements of anisotropies in the cosmic microwave background radiation and the distribution of large scale structure have proved to be invaluable tools to probe inflation. There has been recent interest in examining the deviations from gaussianity in the statistics of the observed fluctuations. These higher order statistics, if conclusively discovered, stand to teach us a great deal about inflation. Forthcoming data including improved measurements of the cosmic microwave background temperature and polarization will provide additional means to investigate the inflationary era. It is important to understand precisely what impact inflation has had on the universe we observe and thus understand precisely what observation can tell us about inflation and how it may fit into a fundamental theory of physics. We will show the conditions under which the cosmological correlation functions generated during inflation are conserved, and thus identify the conditions which allow us to use observations today to learn about inflation. We first prove a general result which applies only to the leading approximation of the correlation functions, and then we discuss how to treat the additional complications that come with subleading corrections. Next, we will discuss the observational implications of achieving the conditions for conservation for a particular class of inflationary models. Lastly, we discuss one example of how observations can be used to probe non-inflationary physics beyond the standard cosmological model. / text
329

Cosmology driven by physics beyond the standard model

Žanić, Marija, 1972- 29 August 2008 (has links)
This dissertation investigates several problems inspired by the interplay of cosmology and theories beyond the Standard Model of particle physics. The first part of this work is a study of time evolution of unstable dS[subscript p] x S[superscript q] configurations with flux in theories of gravity with a cosmological constant. We find that, depending on the flux, these configurations either evolve towards newly identified stable solutions with a smaller final effective cosmological constant, or tend toward decompactication of the internal sphere. In the second part, we investigate the problem of evolution of vacuum bubbles in inhomogeneous backgrounds. It is expected that the process of inflation will signifcantly smooth out spatial inhomogeneities. However, the initial conditions for inflation are often taken in the already homogeneous and isotropic FRW form, even though it is assumed that initial homogeneity is not necessary for the onset of inflation. We determine the effects of certain inhomogeneities, introduced in the curvature of the outside spacetime, on the propagation of bubbles, and how these effects differ depending on whether the perspective taken is that of the outside observer or an observer on the bubble. The last part of the dissertation presents a model for a novel component of the energy density of the universe. The observational limits on the present energy density allow for a component that redshifts like 1/a² and can contribute significantly to the total. We show that one possible origin for such a contribution is that the universe has a toroidal topology with "wound" scalar fields around its cycles.
330

Buddhist cosmology : studies in the cosmic synthesis, cosmic analysis and cosmic dynamics, of the Staviravādin, Sarvāstivādin, and Yogācārin schools : with especial reference to the Chinese sources

McGovern, William Montgomery January 1922 (has links)
No description available.

Page generated in 0.0434 seconds