• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 31
  • 18
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Constraining the mass–richness relationship of redMaPPer clusters with angular clustering

Baxter, Eric J., Rozo, Eduardo, Jain, Bhuvnesh, Rykoff, Eli, Wechsler, Risa H. 21 November 2016 (has links)
The potential of using cluster clustering for calibrating the mass-richness relation of galaxy clusters has been recognized theoretically for over a decade. Here, we demonstrate the feasibility of this technique to achieve high-precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis, we significantly improve the statistical precision of our mass constraints. The amplitude of the mass-richness relation is constrained to 7 per cent statistical precision by our analysis. However, the error budget is systematics dominated, reaching a 19 per cent total error that is dominated by theoretical uncertainty in the bias-mass relation for dark matter haloes. We confirm the result from Miyatake et al. that the clustering amplitude of redMaPPer clusters depends on galaxy concentration as defined therein, and we provide additional evidence that this dependence cannot be sourced by mass dependences: some other effect must account for the observed variation in clustering amplitude with galaxy concentration. Assuming that the observed dependence of redMaPPer clustering on galaxy concentration is a form of assembly bias, we find that such effects introduce a systematic error on the amplitude of the mass-richness relation that is comparable to the error bar from statistical noise. The results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.
12

TOWARD A NETWORK OF FAINT DA WHITE DWARFS AS HIGH-PRECISION SPECTROPHOTOMETRIC STANDARDS

Narayan, G., Axelrod, T., Holberg, J. B., Matheson, T., Saha, A., Olszewski, E., Claver, J., Stubbs, C. W., Bohlin, R. C., Deustua, S., Rest, A. 05 May 2016 (has links)
We present the initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. The spectra of these white dwarfs are analyzed in order to generate a non-local-thermodynamic-equilibrium model atmosphere normalized to Hubble Space Telescope colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to the near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss the lessons learned and the resulting corrective actions applied to our program.
13

SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

Clerc, N., Merloni, A., Zhang, Y.-Y., Finoguenov, A., Dwelly, T., Nandra, K., Collins, C., Dawson, K., Kneib, J.-P., Rozo, E., Rykoff, E., Sadibekova, T., Brownstein, J., Lin, Y.-T., Ridl, J., Salvato, M., Schwope, A., Steinmetz, M., Seo, H.-J., Tinker, J. 21 December 2016 (has links)
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (similar to 7500 deg(2)) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (similar to 10(14)-10(15) M-circle dot) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Delta(z) similar to 0.001) redshifts for 4000-5000 of these systems out to z similar to 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (L-X-sigma) relation and the building of stacked phase-space diagrams.
14

Cosmic voids and void lensing in the Dark Energy Survey Science Verification data

Sánchez, C., Clampitt, J., Kovacs, A., Jain, B., García-Bellido, J., Nadathur, S., Gruen, D., Hamaus, N., Huterer, D., Vielzeuf, P., Amara, A., Bonnett, C., DeRose, J., Hartley, W. G., Jarvis, M., Lahav, O., Miquel, R., Rozo, E., Rykoff, E. S., Sheldon, E., Wechsler, R. H., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Annis, J., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Krause, E., Kuehn, K., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Plazas, A. A., Reil, K., Romer, A. K., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Thomas, D., Walker, A. R., Weller, J. 11 February 2017 (has links)
Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of >= 50 Mpc h(-1)which can render many voids undetectable. We present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-z redMaGiC galaxy sample of the DES Science Verification data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-z scatter, the number of voids found in simulated spectroscopic and photometric galaxy catalogues is within 20 per cent for all transverse void sizes, and indistinguishable for the largest voids (R-v >= 70 Mpc h(-1)). The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8, we identify 87 voids with comoving radii spanning the range 18-120 Mpc h(-1), and carry out a stacked weak lensing measurement. With a significance of 4.4 sigma, the lensing measurement confirms that the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.
15

Evidence for a Hard Ionizing Spectrum from a z=6.11 Stellar Population

Mainali, Ramesh, Kollmeier, Juna A., Stark, Daniel P., Simcoe, Robert A., Walth, Gregory, Newman, Andrew B., Miller, Daniel R. 10 February 2017 (has links)
We present the Magellan/FIRE detection of highly ionized C IV lambda 1550 and O III]lambda 1666 in a deep infrared spectrum of the z = 6.11 gravitationally lensed low-mass galaxy RXC J2248.7-4431-ID3, which has previously known Ly alpha. No corresponding emission is detected at the expected location of He II lambda 1640. The upper limit on He II, paired with detection of O III] and C IV, constrains possible ionization scenarios. Production of C IV and O III] requires ionizing photons of 2.5-3.5 Ryd, but once in that state their multiplet emission is powered by collisional excitation at lower energies (similar to 0.5 Ryd). As a pure recombination line, He II emission is powered by 4 Ryd ionizing photons. The data therefore require a spectrum with significant power at 3.5 Ryd but a rapid drop toward 4.0 Ryd. This hard spectrum with a steep drop is characteristic of low-metallicity stellar populations, and less consistent with soft AGN excitation, which features more 4 Ryd photons and hence higher He II flux. The conclusions based on ratios of metal line detections to helium non-detection are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing handful of reionization-era galaxies with UV emission line ratios distinct from the general z = 2-3 population in a way that suggests hard ionizing spectra that do not necessarily originate in AGNs.
16

Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-infrared Photometric Data

Yang, Qian, Wu, Xue-Bing, Fan, Xiaohui, Jiang, Linhua, McGreer, Ian, Green, Richard, Yang, Jinyi, Schindler, Jan-Torge, Wang, Feige, Zuo, Wenwen, Fu, Yuming 01 December 2017 (has links)
We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z(p) and the spectroscopic redshift z(s), vertical bar Delta z vertical bar=vertical bar z(s)-z(p)vertical bar/(1 + z(s)) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besancon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5 < z < 4.5, and a wide magnitude range 18 < r < 21.5 mag. Our photo-z regression and classification method has the potential to extend to future surveys. The photo-z code will be publicly available.
17

Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy

Venemans, Bram P., Walter, Fabian, Decarli, Roberto, Bañados, Eduardo, Carilli, Chris, Winters, Jan Martin, Schuster, Karl, da Cunha, Elisabete, Fan, Xiaohui, Farina, Emanuele Paolo, Mazzucchelli, Chiara, Rix, Hans-Walter, Weiss, Axel 06 December 2017 (has links)
We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z = 7.54 and report detections of copious amounts of dust and [C Pi] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 Myr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [C 158 mu m cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z similar to 6), making this source by far the FIR-brightest galaxy known at z greater than or similar to 7.5. The [C Pi]emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [C Pi]line, this yields a dynamical mass of the host of <1.5 x 10(11) M-circle dot Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6-4.3) x 10(8) M-circle dot The brightness of the [C Pi] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [C Pi]-SFR scaling relations, we derive star formation rates of 85-545 M-circle dot yr(-1) in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of similar to 10(8) M-circle dot of dust implied by the observations.
18

Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state

Mulroy, Sarah L., McGee, Sean L., Gillman, Steven, Smith, Graham P., Haines, Chris P., Démoclès, Jessica, Okabe, Nobuhiro, Egami, Eiichi 12 1900 (has links)
We study a sample of 19 galaxy clusters in the redshift range 0.15 < z < 0.30 with highly complete spectroscopic membership catalogues (to K < K*(z) + 1.5) from the Arizona Cluster Redshift Survey, individual weak-lensing masses and near-infrared data from the Local Cluster Substructure Survey, and optical photometry from the Sloan Digital Sky Survey. We fit the scaling relations between total cluster luminosity in each of six bandpasses (grizJK) and cluster mass, finding cluster luminosity to be a promising mass proxy with low intrinsic scatter sigma ln (L|M) of only similar to 10-20 per cent for all relations. At fixed overdensity radius, the intercept increases with wavelength, consistent with an old stellar population. The scatter and slope are consistent across all wavelengths, suggesting that cluster colour is not a function of mass. Comparing colour with indicators of the level of disturbance in the cluster, we find a narrower variety in the cluster colours of 'disturbed' clusters than of 'undisturbed' clusters. This trend is more pronounced with indicators sensitive to the initial stages of a cluster merger, e.g. the Dressler Schectman statistic. We interpret this as possible evidence that the total cluster star formation rate is 'standardized' in mergers, perhaps through a process such as a system-wide shock in the intracluster medium.
19

A Magellan M2FS Spectroscopic Survey of Galaxies at 5.5 < z < 6.8: Program Overview and a Sample of the Brightest Lyα Emitters

Jiang, Linhua, Shen, Yue, Bian, Fuyan, Zheng, Zhen-Ya, Wu, Jin, Oyarzún, Grecco A., Blanc, Guillermo A., Fan, Xiaohui, Ho, Luis C., Infante, Leopoldo, Wang, Ran, Wu, Xue-Bing, Mateo, Mario, Bailey, John I., Crane, Jeffrey D., Olszewski, Edward W., Shectman, Stephen, Thompson, Ian, Walker, Matthew G. 11 September 2017 (has links)
We present a spectroscopic survey of high-redshift, luminous galaxies over four square degrees on the sky, aiming to build a large and homogeneous sample of Ly alpha emitters (LAEs) at z approximate to 5.7 and 6.5, and Lyman-break galaxies (LBGs) at 5.5 < z < 6.8. The fields that we choose to observe are well studied, such as by the Subaru XMM-Newton Deep Survey and COSMOS. They have deep optical imaging data in a series of broad and narrow bands, allowing for the efficient selection of galaxy candidates. Spectroscopic observations are being carried out using the multi-object spectrograph M2FS on the Magellan Clay telescope. M2FS is efficient enough to identify high-redshift galaxies, owing to its 256 optical fibers deployed over a circular field of view 30' in diameter. We have observed similar to 2.5 square degrees. When the program is completed, we expect to identify more than 400 bright LAEs at z approximate to 5.7 and 6.5, and a substantial number of LBGs at z >= 6. This unique sample will be used to study a variety of galaxy properties and to search for large protoclusters. Furthermore, the statistical properties of these galaxies will be used to probe cosmic reionization. We describe the motivation, program design, target selection, and M2FS observations. We also outline our science goals, and present a sample of the brightest LAEs at z approximate to 5.7 and 6.5. This sample contains 32 LAEs with Ly alpha luminosities higher than 10(43) erg s(-1). A few of them reach >= 3 x 10(43) erg s(-1), comparable to the two most luminous LAEs known at z >= 6, "CR7" and "COLA1." These LAEs provide ideal targets to study extreme galaxies in the distant universe.
20

Calibrating the Planck cluster mass scale with CLASH

Penna-Lima, M., Bartlett, J. G., Rozo, E., Melin, J.-B., Merten, J., Evrard, A. E., Postman, M., Rykoff, E. 14 August 2017 (has links)
We determine the mass scale of Planck galaxy clusters using gravitational lensing mass measurements from the Cluster Lensing And Supernova survey with Hubble (CLASH). We have compared the lensing masses to the Planck Sunyaev-Zeldovich (SZ) mass proxy for 21 clusters in common, employing a Bayesian analysis to simultaneously fit an idealized CLASH selection function and the distribution between the measured observables and true cluster mass. We used a tiered analysis strategy to explicitly demonstrate the importance of priors on weak lensing mass accuracy. In the case of an assumed constant bias, b(SZ), between true cluster mass, M-500, and the Planck mass proxy, M-PL, our analysis constrains 1 - b(SZ) = 0.73 +/- 0.10 when moderate priors on weak lensing accuracy are used, including a zero-mean Gaussian with standard deviation of 8% to account for possible bias in lensing mass estimations. Our analysis explicitly accounts for possible selection bias effects in this calibration sourced by the CLASH selection function. Our constraint on the cluster mass scale is consistent with recent results from the Weighing the Giants program and the Canadian Cluster Comparison Project. It is also consistent, at 1.34 sigma, with the value needed to reconcile the Planck SZ cluster counts with Planck's base Lambda CDM model fit to the primary cosmic microwave background anisotropies.

Page generated in 0.1249 seconds