301 |
Accurate Prediction of Chiroptical PropertiesMach, Taylor Joseph 16 June 2014 (has links)
Accurate theoretical predictions of optical rotation are of substantial utility to the chemical community enabling the determination of absolute configuration without the need for poten- tially lengthy total synthesis. The requirements for robust calculation of gas-phase optical rotation are well understood, but too expensive for routine use. In an effort to reduce this cost we have examined the performance of the LPol and ORP basis sets, created for use in density functional theory calculations of optical rotation, finding that at the coupled cluster level of theory they perform the same or better than comparably sized general basis sets that are often used.
We have also examined the performance of a perturbational approach to inclusion of explicit solvent molecules in an effort to extend the calculation of response properties from the gas phase to the condensed phase. This N-body approach performs admirably for interaction energies and even dipole moments but breaks down for optical rotation, exhibiting large basis set superposition errors and requiring higher-order terms in the expansion to provide reasonable accuracy.
In addition, we have begun the process of implementing a gauge invariant version of coupled cluster response properties to address the fundamentally unphysical lack of gauge invariance in coupled cluster optical rotations. Correcting this problem, which arises from the non- variational nature of the coupled cluster wavefunction, involves reformulating the response amplitude and function expressions and solving for all necessary amplitudes simultaneously. / Ph. D.
|
302 |
Analysis and Design of a DCM SEPIC PFC with Adjustable Output VoltageChen, Rui 31 March 2015 (has links)
Power Factor Correction rectifiers are widely adopted as the first stage in most grid-tied power conversion systems. Among all PFC converts for single phase system, Boost PFC is the most popular one due to simplicity of structure and high performance. Although the efficiency of Boost PFC keeps increasing with the evolution of semiconductor technology, the intrinsic feature of high output voltage may result cumbersome system structure with multiple power conversion stages and even diminished system efficiency. This disadvantage is aggravated especially in systems where resonant converters are selected as second stage.
Especially for domestic induction cooker application, step-down PFC with wide range output regulation capability would be a reasonable solution, Conventional induction cooker is composed by input filter, diode-bridge rectifier, and full bridge or half bridge series resonant circuit (SRC). High frequency magnetic field is induced through the switching action to heat the pan. The power level is usually controlled through pulse frequency modulation (PFM). In such configuration, first, a bulky input differential filter is required to filter out the high frequency operating current in SRC. Second, as the output power decreases, the operating point of SRC is moved away from the optimum point, which would result large amount circulating energy. Third, when the pan is made of well conducting and non-ferromagnetic material such as aluminum, due to the heating resistance become much smaller and peak output voltage of the switching bridge equals to the peak voltage of the grid, operating the SRC at the series resonant frequency can result excessive current flowing through the switch and the heating coil. Thus for pan with smaller heating resistance, even at maximum power, the operating frequency is pushed further away from the series resonant point, which also results efficiency loss.
To address these potential issues, a PFC circuit features continuous conducting input current, high power factor, step-down capability and wide range output regulation would be preferred. The Analysis and design work is present in this article for a non-isolated hard switching DCM SEPIC PFC. Due to DCM operation of SPEIC converter, wide adjustable step-down output voltage, continuous conduction of input current and elimination of reverse recovery loss can be achieved at same time.
The thesis begins with circuit operation analysis for both DC-DC and PFC operation. Based on averaged switching model, small signal model and corresponding transfer functions are derived. Especially, the impact from small intermediate capacitor on steady state value are discussed.
With the concept of ripple steering, theoretic analysis is applied to SEPIC converter with two coupled inductors. The results indicate if the coupling coefficient is well designed, the equivalent input inductance can be multiple times larger than the self-inductance. Because of this, while maintaining input current ripple same, the two inductors of SEPIC can be implemented with two smaller coupled inductors. Thus both the total volume of inductors and the total number of windings can be reduced, and the power density and efficiency can be improved. Based on magnetic reluctance model, a corresponding winding scheme to control the coupling coefficient between two coupled inductors is analyzed. Also the impact of coupled inductors on the small signal transfer function is discussed.
For the voltage follower control scheme of DCM PFC, single loop controller and notch filter design are discussed. With properly designed notch filter or the PR controller in another word, the closed loop bandwidth can be increased; simple PI controller is sufficient to achieve high power factor; THD of the input current can be greatly reduced.
Finally, to validate the analysis and design procedure, a 1 kW prototype is built. With 120 Vrms AC input, 60V to 100V output, experimental results demonstrate unity power factor, wide output voltage regulation can be achieved within a single stage, and the 1 kW efficiency is around 93%. / Master of Science
|
303 |
Human Dimensions of Young Forest Conservation Programs: Effects of Outreach, Post-Program Management, and a Coupled Systems PerspectiveLutter, Seth Hendrik 13 August 2018 (has links)
Achieving long-term conservation gains through the framework of conservation incentive programs requires an understanding of both the ecological and social components of these programs. Landowner program experiences and management decisions after program participation are important for long-term conservation, but these aspects of conservation programs are not well understood. To address this research gap related to conservation program participation, this thesis investigates Natural Resources Conservation Service programs that provide private landowners with financial and technical assistance to manage for young forest habitat in the eastern United States. We conducted a telephone survey to investigate private landowner experiences during and after participation in these NRCS conservation programs. Coordinating with biologists monitoring managed properties for birds, we assessed how in-person outreach and mailed monitoring results influenced landowners. Next, we evaluated how landowner motivations, resources, and cognitions were related to post-program young forest management intentions. Finally, we applied a coupled human and natural systems lens to investigate the linkage between wildlife outcomes, landowner perceptions, and continued young forest management. Our results demonstrate how in-person outreach can shape positive conservation experiences and increasing landowner trust in resource agencies. We also demonstrate the importance of both social and environmental factors for influencing landowner decision-making after conservation program participation. We detail the applications of this research for conservation agencies and professionals who work with private landowners. / Master of Science / The decline of young forest habitat and associated wildlife species is a major conservation issue in the eastern United States. Since 2011, Natural Resources Conservation Service conservation programs have provided hundreds of private landowners with financial and technical assistance to create and maintain young forest habitat. Landowner program experiences and management decisions after program participation are important for long-term conservation, but information is limited on these aspects of NRCS young forest programs. In response, we conducted a telephone survey to investigate private landowner experiences during and after participation in these conservation programs. Coordinating with biologists monitoring managed properties for birds, we assessed how in-person outreach and mailed monitoring results influenced landowners. Next, we evaluated how landowner motivations, resources, and cognitions were related to post-program young forest management intentions. Finally, we examined how landowners observed and interpreted wildlife outcomes of young forest management and how these perceptions were related to habitat management after program participation. Our results highlight the importance of in-person outreach for shaping positive conservation experiences and increasing landowner trust in resource agencies. We also demonstrate the importance of both social and environmental factors for influencing landowner decision-making after conservation program participation. We detail the applications of this research for conservation agencies and professionals who work with private landowners.
|
304 |
Tunable RF MEMS bandpass filter with coupled transmission linesElfergani, Issa T., Hussaini, Abubakar S., Rodriguez, Jonathan, Marques, P., Abd-Alhameed, Raed January 2015 (has links)
No / Passive and active devices are essential devices in mobile and base stations’ transceiver. Consequently, these devices dominated the large part of the PCB of the today’s transceiver. However, the tomorrow’s mobile terminals without circuit tunability would be extremely large in size to accommodate present and future radio access technologies (RATs). The stand-alone transceiver for one single RAT is comprised of single passive and active devices and adding two or more RATs for the same transceiver would require adding two or more devices, since all of these RATs standards work on different frequency bands. Apparently, without tunability approach, this will increase the complexity of the system design and will cover a large part of the circuit space leading to power consumptions, loss which results to the poor efficiency of the transceiver. In this work, a miniaturized RF MEMS tunable bandpass is developed to operate in the frequency range from 1.8 to 2.6 GHz.
|
305 |
Pre-ionization studies on the modular theta-pinch experiment for field-reversed configuration applicationsBean, Ian Alexander 31 October 2024 (has links)
A new semi-empirical model is introduced for the quantification of inductively-coupled breakdown systems. The model is informed by breakdown studies conducted on the Modular Theta-pinch eXperiment (MTX). Observations made of inductively-coupled breakdown behaviour are consistent with the model's expectations, indicating that the model can be used to aid in design of inductively-coupled pre-ionization systems. The model is further found to be capable of quantifying the efficacy of seed ionization in inductively-coupled systems. Comparisons are made between the standard ringing-theta and a new field-aligned dipole pre-ionization systems. In the presence of sufficient seed ionization, no physical reason was observed for selection of one method over the other, leaving only engineering considerations as the determining factor for selection of an appropriate pre-ionization system. This work is supported by the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech and the National Nuclear Security Administration of the U.S. Department of Energy. LA-UR-24-31269 / Doctor of Philosophy / A new experiment at Los Alamos National Laboratory called the Modular Theta-pinch eXperiment (MTX) has been constructed to explore a variety of applications of Field-Reversed-Configurations (FRCs). An FRC is a plasma torus with a unique magnetic field configuration that has potential applications for astrophysical shock studies, fusion energy, and space proplusion. The first step in forming an FRC is the pre-ionization step, in which a plasma is created with a magnetic field diffused throughout its volume. The first purpose of this study is to better characterize inductively-coupled breakdown. Breakdown refers to the transition of a gas into a plasma (the fourth state of matter). To do this using inductively-coupled methods means that oscillating magnetic fields are used to induce electric fields in the gas, which cause electrons to gain energy and eventually collide with gas particles, creating a plasma. The second purpose of this study is to compare the more common ringing-theta pre-ionization method to a field-aligned method. Ringing-theta systems have been observed to encounter difficulties with diffusion of magnetic field into the pre-ionized plasma and field-aligned methods are a potential alternative that can circumvent the problems that ringing-theta systems encounter. Together, these studies should allow for other experimentalists to more easily design pre-ionization systems for both FRC experiments and general plasma physics experiments.
|
306 |
Explorando aspectos energéticos, estruturais e cinéticos de espécies químicas utilizando abordagens altamente correlacionadas / Exploring energetic, structural and kinetic aspects of chemical species using highly correlated approachesAlves, Tiago Vinicius 19 April 2013 (has links)
Neste estudo, parâmetros estruturais, energéticos e da frequências vibracionais para os estados X 3Σ- e A 3II do radical CNN e X 2II das espécies iônicas CNN+ e CNN- foram obtidos no nível de teoria CCSD(T)/CBST-5. No estudo termoquímico, os valores para o calor de formação da espécie neutra foram, ΔHf (O K) = 138,89 kcal/mol e ΔHf (298,15 K) = 139,65 kcal/mol. Para o potencial de ionização e a afinidade eletrônica, os resultados deste trabalho são 10,969 e 1,743 eV, respectivamente. Otimizações de geometria para os estados eletrônicos X 3Σ-, A 3II, a 1Δ, b 1Σ+, c 1II, d X 1Σ- e B 3Σ- realizadas com a metodologia MRCI nos permitiram obter valores para Te. Além disso, as energias de transição vertical para 15 estados eletrônicos também foram determinadas. Utilizando o nível de teoria CCSD(T)-F12b/CBSD-Q, geometrias de equilíbrio e frequências vibracionais harmônicas e anarmônicas foram estimadas para a molécula C30 e seu ânion C30-. Uma avaliação dos efeitos que inclusão dos elétrons do caroço no cálculo de diferentes propriedades foi realizada. Descrevemos a primeira determinação do calor de formação para a molécula C3O, ΔHf (0 K) = 79,41 kcal/mol e ΔHf( (298,15 K) = 83,39 kcal/mol, além do cálculo da afinidade eletrônica (1,114 eV). No que se refere à cinética e à dinâmica química, a determinação das constantes de velocidade foi realizada para duas reações de abstração de hidrogênio. Na primeira, as constantes de velocidade para a reação S (3P) + CH4 → SH + CH3, numa ampla faixa de temperaturas (T = 200 - 3000 K), foram determinadas utilizando SS-VTST/MT combinada com cálculos DFT/M05-2X/MG3S. A 1200 K, a constante de velocidade CVT/SCT para este processo (2,85 x 10-14 cm3 molécula-1 s-1) está em excelente concordância com o resultado experimental (8,14 x 10-14 cm3 molécula-1 s-1). Na segunda, o estudo a reação de abstração de hidrogênio do butanoato de metila por hidrogênio atômico foi realizada utilizando a abordagem cinética MS-VTST/MT combidada com cálculos MPWB1K/G- 31+G(d,p). Nesta aproximação cinética, a anarmonicidade associada às torções angulares amortecidas, bem como o acoplamento entre elas foram consideradas no cálculo das constante de velocidade. Neste processo, verificamos que a inclusão da anarmonicidade torcional nas constantes de velocidade aumenta a constante de velocidade em aproximadamente 8-10% a altas temperaturas (T = 1000 -2000 K). A temperaturas mais baixas, os efeitos de tunelamento são predominantes e a constante de velocidade CVT/SCT para a reação CH3CH2CH2COOCH3 + H (2S) → CH2CH2CH2COOCH3 + H (2S) a 300 K (6,17 x 10-18 cm3 molécula-1 s-1) é 8,2 vezes maior que a obtida com CVT (5,07 x 10-17 cm3 molécula-1 s-1). / In this study, the structures, energies and vibrational frequencies for the X 3Σ- e A3II electronic states of CNN, and X 2II of the ions CNN+ and CNN- were obtained at the CCSD(T)/CBST-5 level of theory. Additionally, we also estimated the heats of formation for the neutral species ΔHf (0 K) = 138.89 kcal/mol and ΔHf(298.15 K) = 139.65 kcal/mol. For the ionization potential and electron affinities, this work predicted the values of 10.969 e 1.743 eV, respectively. Geometry optimizations for the electronic states 3Σ-, A 3II, a 1Δ, b 1Σ+, c 1II, d X 1Σ- e B 3Σ- performed with the MRCI approach allowed us to compute the excitation energies (Te). Furthermore, vertical transition energies were also calculated for 15 electronic states. Using the CCSD(T)-F12b/CBSD-Q level of theory, equilibrium geometries, and harmonic and anharmonic vibrational frequencies were estimated for the C3O molecule and the anion C3O-. An assessment of the effects of inclusion of core electrons in the calculation of some properties was also carried out. The determination of the heat of formation of the molecule C3O (ΔHf (0 K) = 79.41 kcal/mol and ΔHf (298.15 K) = 83.39 kcal/mol), and its electron affinity (1,114 eV) were the first ones reported in the literature. In the kinetics investigation, we estimated the rate constants for two hydrogen abstraction reactions. Rate constants for the reaction S(3P) + CH4 → SH + CH3 were predicted for a wide range of temperatures (T = 200 - 3000 K) using VTST/MT combined with DFT/M05-2X/MG3S calculations. At 1200 K, the calculated rate constant CVT/SCT for this process is 2.85 x 10-14 cm3 molecule-1 s-1. For the reaction of hydrogen abstraction from methyl butanoate by a hydrogen atom, the MS-VTST/MT method combined with the density functional MPWB1K/G-31+G(d,p) was employed. In this study, anharmonic torsional hindered rotations were considered in calculations of the rate constants. At high temperatures, the inclusion of torsional anharmonicity increases the rate constants by approximately 8-10%. At low temperatures, tunneling effects are predominant and the rate constant CVT/SCT (6.17 x 10-18 cm3 molécula-1 s-1) is 8.2 times higher than the CVT one (5.07 x 10-17 cm3 molécula-1 s-1 ).
|
307 |
A numerical study of a highway embankment on degrading permafrostGholamzadehabolfazl, Arash 04 December 2015 (has links)
In this research, two comprehensive numerical models were developed using ABAQUS/CAE Finite Element (FE) software: 1) geothermal model, and 2) coupled thermo-hydro-mechanical model. In the first model, a purely heat transfer analysis was performed to reproduce the conditions at the site and investigate the subsurface thermal regime beneath the road embankment. The existence of a frozen section (frost bulb) underneath the embankment and its size and location were investigated by the model. The second model concentrated on the mechanical behaviour of the road embankment. Temperature-dependent thermal and mechanical properties were used for all the materials. Model parameters were calibrated using the results of the triaxial and oedometer tests which have been conducted by previous researchers. A fully-coupled and a sequentially-coupled analysis were conducted. The results of the two analyses were compared to each other and to the field measurements. / February 2016
|
308 |
Infinite-Dimensional LQ Control for Combined Lumped and Distributed Parameter SystemsAlizadeh Moghadam, Amir Unknown Date
No description available.
|
309 |
Air-coupled detection of Rayleigh surface waves to assess material nonlinearity due to precipitation in alloy steelThiele, Sebastian 13 January 2014 (has links)
Nonlinear ultrasonic waves have demonstrated high sensitivities to various microstructural changes in metal including coherent precipitates; these precipitates introduce a strain field in the lattice structure. The thermal aging of certain alloy steels leads to the formation of coherent precipitates, which pin dislocations and contribute to the generation of a higher harmonics in an initially monochromatic wave.
The objective of this research is to develop a robust technique to perform nonlinear Rayleigh wave measurements in metals using a non-contact receiving transducer. In addition a discussion about the data processing based on the two-dimensional diffraction and attenuation model is provided in order to calculate the relative nonlinearity parameter.
A precipitate hardenable material, 17-4 PH stainless steel, is used to obtain different precipitation stages by thermal treatment and the influence of precipitates on the ultrasonic nonlinearity is assessed.
Conclusions about the microstrucutural changes in the material are drawn based on the nonlinear Rayleigh surface wave measurement and complementary measurements of thermo-electric power, mircohardness and ultrasonic velocity.
The results show that the nonlinearity parameter is sensitive to coherent precipitates in the material and moreover that precipitation characteristics can be characterized based on the obtained experimental data.
|
310 |
Explorando aspectos energéticos, estruturais e cinéticos de espécies químicas utilizando abordagens altamente correlacionadas / Exploring energetic, structural and kinetic aspects of chemical species using highly correlated approachesTiago Vinicius Alves 19 April 2013 (has links)
Neste estudo, parâmetros estruturais, energéticos e da frequências vibracionais para os estados X 3Σ- e A 3II do radical CNN e X 2II das espécies iônicas CNN+ e CNN- foram obtidos no nível de teoria CCSD(T)/CBST-5. No estudo termoquímico, os valores para o calor de formação da espécie neutra foram, ΔHf (O K) = 138,89 kcal/mol e ΔHf (298,15 K) = 139,65 kcal/mol. Para o potencial de ionização e a afinidade eletrônica, os resultados deste trabalho são 10,969 e 1,743 eV, respectivamente. Otimizações de geometria para os estados eletrônicos X 3Σ-, A 3II, a 1Δ, b 1Σ+, c 1II, d X 1Σ- e B 3Σ- realizadas com a metodologia MRCI nos permitiram obter valores para Te. Além disso, as energias de transição vertical para 15 estados eletrônicos também foram determinadas. Utilizando o nível de teoria CCSD(T)-F12b/CBSD-Q, geometrias de equilíbrio e frequências vibracionais harmônicas e anarmônicas foram estimadas para a molécula C30 e seu ânion C30-. Uma avaliação dos efeitos que inclusão dos elétrons do caroço no cálculo de diferentes propriedades foi realizada. Descrevemos a primeira determinação do calor de formação para a molécula C3O, ΔHf (0 K) = 79,41 kcal/mol e ΔHf( (298,15 K) = 83,39 kcal/mol, além do cálculo da afinidade eletrônica (1,114 eV). No que se refere à cinética e à dinâmica química, a determinação das constantes de velocidade foi realizada para duas reações de abstração de hidrogênio. Na primeira, as constantes de velocidade para a reação S (3P) + CH4 → SH + CH3, numa ampla faixa de temperaturas (T = 200 - 3000 K), foram determinadas utilizando SS-VTST/MT combinada com cálculos DFT/M05-2X/MG3S. A 1200 K, a constante de velocidade CVT/SCT para este processo (2,85 x 10-14 cm3 molécula-1 s-1) está em excelente concordância com o resultado experimental (8,14 x 10-14 cm3 molécula-1 s-1). Na segunda, o estudo a reação de abstração de hidrogênio do butanoato de metila por hidrogênio atômico foi realizada utilizando a abordagem cinética MS-VTST/MT combidada com cálculos MPWB1K/G- 31+G(d,p). Nesta aproximação cinética, a anarmonicidade associada às torções angulares amortecidas, bem como o acoplamento entre elas foram consideradas no cálculo das constante de velocidade. Neste processo, verificamos que a inclusão da anarmonicidade torcional nas constantes de velocidade aumenta a constante de velocidade em aproximadamente 8-10% a altas temperaturas (T = 1000 -2000 K). A temperaturas mais baixas, os efeitos de tunelamento são predominantes e a constante de velocidade CVT/SCT para a reação CH3CH2CH2COOCH3 + H (2S) → CH2CH2CH2COOCH3 + H (2S) a 300 K (6,17 x 10-18 cm3 molécula-1 s-1) é 8,2 vezes maior que a obtida com CVT (5,07 x 10-17 cm3 molécula-1 s-1). / In this study, the structures, energies and vibrational frequencies for the X 3Σ- e A3II electronic states of CNN, and X 2II of the ions CNN+ and CNN- were obtained at the CCSD(T)/CBST-5 level of theory. Additionally, we also estimated the heats of formation for the neutral species ΔHf (0 K) = 138.89 kcal/mol and ΔHf(298.15 K) = 139.65 kcal/mol. For the ionization potential and electron affinities, this work predicted the values of 10.969 e 1.743 eV, respectively. Geometry optimizations for the electronic states 3Σ-, A 3II, a 1Δ, b 1Σ+, c 1II, d X 1Σ- e B 3Σ- performed with the MRCI approach allowed us to compute the excitation energies (Te). Furthermore, vertical transition energies were also calculated for 15 electronic states. Using the CCSD(T)-F12b/CBSD-Q level of theory, equilibrium geometries, and harmonic and anharmonic vibrational frequencies were estimated for the C3O molecule and the anion C3O-. An assessment of the effects of inclusion of core electrons in the calculation of some properties was also carried out. The determination of the heat of formation of the molecule C3O (ΔHf (0 K) = 79.41 kcal/mol and ΔHf (298.15 K) = 83.39 kcal/mol), and its electron affinity (1,114 eV) were the first ones reported in the literature. In the kinetics investigation, we estimated the rate constants for two hydrogen abstraction reactions. Rate constants for the reaction S(3P) + CH4 → SH + CH3 were predicted for a wide range of temperatures (T = 200 - 3000 K) using VTST/MT combined with DFT/M05-2X/MG3S calculations. At 1200 K, the calculated rate constant CVT/SCT for this process is 2.85 x 10-14 cm3 molecule-1 s-1. For the reaction of hydrogen abstraction from methyl butanoate by a hydrogen atom, the MS-VTST/MT method combined with the density functional MPWB1K/G-31+G(d,p) was employed. In this study, anharmonic torsional hindered rotations were considered in calculations of the rate constants. At high temperatures, the inclusion of torsional anharmonicity increases the rate constants by approximately 8-10%. At low temperatures, tunneling effects are predominant and the rate constant CVT/SCT (6.17 x 10-18 cm3 molécula-1 s-1) is 8.2 times higher than the CVT one (5.07 x 10-17 cm3 molécula-1 s-1 ).
|
Page generated in 0.0519 seconds