• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calcul de Malliavin, processus de Lévy et applications en finance : quelques contributions

Renaud, Jean-François January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
2

Calcul stochastique via régularisation en dimension infinie avec perspectives financières

Di Girolami, Cristina 05 July 2010 (has links) (PDF)
Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de Chi-variation quadratique, où Chi est un sous-espace du dual d'un produit tensioriel B⊗B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-τ,0], τ>0. Une classe de résultats de stabilité de classe C^1 pour des processus ayant une Chi-variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C[-τ,0] est le dénommé processus fenêtre X_t(•) où X_t(y) = X_{t+y}, y ∈ [-τ,0]. Soit T>0. Si X est un processus dont la variation quadratique vaut [X]_t = t et h = H(X_T(•)) où H:C([-T,0])→ R est une fonction de classe C^3 Fréchet par rapport à L^2([-T,0] ou H dépend d'un numéro fini d' intégrales de Wiener, il est possible de représenter h comme un nombre réel H_0 plus une intégrale progressive du type \int_0^T \xi d^-X où \xi est un processus donné explicitement. Ce résultat de répresentation de la variable aléatoire h sera lié strictement à une fonction u:[0,T] x C([-T,0])→R qui en général est une solution d'une equation au derivées partielles en dimension infinie ayant la proprieté H_0=u(0, X_0(•)), \xi_t=Du(t, X_t(•))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif soujacent n'est pas une semimartingale.
3

Contributions à la simulation et à l'analyse de discrétisation de processus, et applications.

GOBET, Emmanuel 24 November 2003 (has links) (PDF)
Nous présentons quelques contributions à la simulation et à l'analyse de discrétisation de processus, avec leurs applications notamment en finance. Nous avons regroupé nos travaux selon 4 thèmes: 1. statistique des processus avec observations discrètes; 2. couverture en temps discret en finance; 3. sensibilités d'espérances; 4. analyses d'erreurs de discrétisation. Le premier chapitre sur la statistique des processus est assez indépendant du reste. En revanche, les trois autres chapitres correspondent à une cohérence et une progression dans les questions soulevées. Néanmoins au fil de la lecture, on remarquera des liens entre les quatre parties: différentiation par rapport à des domaines et amélioration de simulation de temps de sortie, sensibilités d'espérances et statistique asymptotique avec le calcul de Malliavin, sensibilités d'espérances et analyse d'erreur etc... Les preuves des résultats s'appuient notamment sur les outils du calcul de Malliavin, des martingales, des Équations aux Dérivées Partielles et de leurs liens avec les Équations Différentielles Stochastiques.
4

Contributions à l'étude de discrétisation des processus avec sauts, du risque de liquidité, et du risque de saut dans les marchés financiers

Tankov, Peter 09 December 2010 (has links) (PDF)
Ce document synthétise mes contributions à l'étude de discrétisation des processus avec sauts, et à la modélisation du risque de liquidité et du risque de saut dans les marchés financiers. Chapitre 2 regroupe les résultats plus théoriques dans le domaine de discrétisation des processus stochastiques avec sauts, avec notamment une étude de l'erreur de discrétisation des stratégies de couverture, et des nouveaux schémas de simulation des équations différentielles stochastiques dirigées par des processus de Lévy. Chapitre 3 présente et étudie via le contrôle stochastique un problème d'optimisation d'investissement et de consommation dans les marchés financiers illiquides. Chapitre 4 contient des travaux plus appliqués sur la modélisation du risque de saut dans les stratégies d'assurance de portefeuille, les produits dérivés, et les marchés d'électricité.

Page generated in 0.1113 seconds