• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 50
  • 11
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 202
  • 202
  • 68
  • 56
  • 31
  • 31
  • 30
  • 29
  • 28
  • 27
  • 25
  • 25
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Factors affecting the nutritional composition and digestibility of corn for silage: Cover crops and cell wall composition

Brown, Alston Neal 15 September 2017 (has links)
Corn silage is one of the major components in dairy cattle rations in the United States. Many factors affect the nutritional composition of corn for silage, such as cropping system, including cover crops, and the composition of the corn plant cell wall. The objectives of the first study were to determine the nutritional quality of different winter crops for silage and to determine the impact of the various winter crops on the succeeding productivity of corn and sorghum. Experimental plots were planted with 15 different winter crop treatments: 5 winter annual grasses in monoculture or with one of two winter annual legumes (crimson clover [CC] and hairy vetch [HV]). After harvesting the winter crops, each plot was planted with either corn or forage sorghum. Crimson clover increased DM yield compared to monocultures but HV did not. Adding legumes increased the crude protein concentration, but reduced the fiber and sugar concentrations of the forages. Even though in vitro neutral detergent fiber digestibility was reduced with the addition of legumes, the concentration of highly digestible non-fibrous components is greater in the mixtures than the monocultures, increasing the nutritive value of the silage. The objective of the second study was to determine the cell wall (CW) composition along the corn stalk. Three phytomers of corn plants were examined: center (C) of ear insertion, upper (U) and lower (L) phytomers. Each phytomer was cut into 4 sections: top (T), middle (M), bottom (B), and node (N). The CW, uronic acid (UA), glucose (GLU), and lignin concentrations did not change among phytomers. The concentrations of arabinose (ARA) and xylose (XYL) were greater in the U than in the L phytomers. Concentrations of CW, ARA, and XYL increased from B to T within the phytomer, but UA and GLU concentrations decreased from B to T. Lignin did not change within the phytomer. In mature corn for silage, changes within the corn internode may be more useful in determining how the environment changes the CW. / Ph. D.
32

Herbicide Carryover to Cover Crops and Evaluation of Cover Crops for Annual Weed Control in Corn and Soybeans

Rector, Lucas Scott 12 December 2019 (has links)
While cover crops are actively growing, they compete with winter annual weeds. Studies were conducted to determine the ability of early planted cover crop monocultures and mixtures and a fall applied residual herbicide to compete with winter annual weeds. Cereal rye containing cover crops provided the greatest control of winter weeds in May. Flumioxazin, as a fall applied herbicide, controlled winter weeds in December, but control did not persist until May. Once cover crops are terminated, their residue suppresses summer annual weeds. A greenhouse experiment studying the effects of cereal rye biomass on common ragweed and Palmer amaranth control and light penetration and two field experiments to determine the effects of cereal rye and wheat cover crop biomass terminated with a roller crimper or left standing on summer weed control and light penetration were conducted. For summer weed control, as cover crop biomass increased, weed control increased, light penetration decreased, soil temperature decreased, and soil moisture increased. Standing cover crop residue provided greater control of common ragweed compared to rolled residue until 8400 kg ha⁻¹ of cover crop biomass. As cover crop biomass increased, rolled cover crop residue reduced light penetration compared to standing residue. Wheat cover crop residue increased soil moisture more compared to cereal rye residue. Cover crops must become established to produce adequate biomass to compete with weeds. Herbicide carryover has the potential to reduce cover crop establishment. A study was conducted to evaluate the potential for 30 different residual herbicides applied in the cash crop growing season to carryover to 10 different cover crops. While visible injury was observed, cover crop biomass was similar to the nontreated check in all cases, indicating that herbicide carryover to cover crops is of little concern. Herbicide carryover has few biological effects on establishment of cover crops, under the conditions and herbicides evaluated, that are effective at competing with winter annual weeds and suppressing summer annual weeds. / Master of Science in Life Sciences / Cover crops are grown after the cash crop has been harvested and terminated before another is planted. They are grown for environmental and agronomic benefits and not harvested. Cover crops improve soil health, reduce erosion, prevent nutrient loss, and control weeds. Cover crops can compete with weeds while they are actively growing. Their residue can create a mulch layer to reduce weed establishment and limit the amount of light reaching weed seed to reduce germination and establishment. As winter cover crops are growing, they compete with winter weeds for sunlight, nutrients, and water. Fall applied herbicides that remain active in the soil are also utilized to control winter weeds in between cash crop growing seasons. Experiments evaluated the ability of cover crop monocultures and cover crop mixtures compared to a fall applied herbicide to compete with winter annual weeds. Monocultures and mixtures of cereal rye, crimson clover, hairy vetch, and forage radish were utilized. Cereal rye containing treatments provided the greatest control of winter weeds in the spring. The fall applied herbicide provided adequate control of winter weeds in December, but control did not persist until the May, indicating that a fall applied herbicide will not provide control of winter weeds from cash crop harvest to the next cash crop planting. As cover crop biomass increases, summer annual weed control increases. Cover crops are usually terminated with herbicide and left standing in Virginia, but the use of a roller crimper lays down residue and creates a mulch layer. Experiments compared the effects of cereal rye and wheat cover crops at different biomass rates terminated with herbicide only (left standing) or a roller crimper and herbicide on summer weed control, light penetrating the cover crop canopy and reaching the soil surface, soil moisture, and soil temperature. As cover crop biomass increased, weed control increased, light reaching the soil surface decreased, soil temperature decreased, and soil moisture increased. Standing cover crop residue provided greater weed control until 8400 kg ha⁻¹ of cover crop biomass was reached. After 8400 kg ha⁻¹ rolled cover crop residue provided greater control, but control from standing and rolled were both greater than 80% compared to the no cover control. Cereal rye intercepted more light than wheat cover crop residue at less than 6000 kg ha⁻¹ of cover crop biomass was achieved. Rolled cover crop residue intercepted more light than standing residue. Established cover crops most produce adequate biomass to effectively control weeds. Herbicides applied during the cash crop growing season to control weeds can remain active in the soil and reduce the establishment of subsequently planted cover crops. Experiments evaluated the potential for different herbicides applied during the cash crop, such as corn, cotton, or soybeans, to remain in the soil at high enough concentrations to injure cover crops commonly utilized in the Mid-Atlantic region. Cover crops utilized were wheat, barley, cereal rye, oats, annual ryegrass, forage radish, Austrian winter pea, crimson clover, hairy vetch, and rapeseed. Results suggest that little potential exists for the herbicides utilized to persist in the soil to injure the five grass cover crop species utilized. There is the potential for some herbicides to injure forage radish, crimson clover, and rapeseed, but no reduction in cover crop biomass was observed, indicating there is little concern for herbicide carryover to cover crops. Residual herbicide carryover has little effect on establishment of cover crops and does not reduce cover crop biomass, under the conditions and herbicides tested in this study. Cover crops can effectively compete with winter weeds, and as cover crop biomass increases, summer annual weed control increases.
33

Impact of cover crops and nitrogen application on nitrous oxide fluxes and grain yield of sorghum and maize

Mahama, George Yakubu January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / P. V. Vara Prasad / Leguminous cover crops systems have been envisaged as a critical component of sustainable agriculture due to their potential to increase soil productivity through cycling of carbon (C) and nitrogen (N) in agricultural systems. The objectives of this study were to evaluate the performance of leguminous summer cover crops; cowpea [Vigna unguiculata (L.) Walp.], pigeon pea [Cajanus cajan (L.) Millsp], sunn hemp (Crotalaria juncea L.) and double-cropped grain crops; grain sorghum [Sorghum bicolor (L.) Moench] and soybean [Glycine max (L.) Merr.] after winter wheat (Triticum aestivum L.) and to determine the effects of these crops and varying N rates in the cropping system on nitrous oxide (N[subscript]2O) emissions, growth and yield of succeeding grain sorghum and maize (Zea mays L.) crop, soil aggregation, aggregate-associated C, and N. Field and laboratory studies were conducted for two years. The cover crops and double-cropped grain crops were planted immediately after winter wheat harvest. The cover crops were terminated at the beginning of flowering. Nitrogen fertilizer (urea 46% N) rates of 0, 45, 90, 135, and 180 kg N ha[superscript]-1 were applied to grain sorghum or maize in fallow plots. Pigeon pea and grain sorghum had more C accumulation than cowpea, sunn hemp and double-cropped soybean. Pigeon pea and cowpea had more N uptake than sunn hemp and the double-cropped grain crops. Fallow with N fertilizer application produced significantly greater N[subscript]2O emissions than all the cover crops systems. Nitrous oxide emissions were relatively similar in the various cover crop systems and fallow with 0 kg N ha[superscript]-1. Grain yield of sorghum and maize in all the cover crop and double cropped soybean systems was similar to that in the fallow with 45 kg N ha[superscript]-1. Both grain sorghum and maize in the double-cropped soybean system and fallow with 90 kg N ha[superscript]-1 or 135 kg N ha[superscript]-1 gave profitable economic net returns over the years. The double-cropped grain sorghum system increased aggregate-associated C and whole soil total C, and all the cover crop and the double-cropped soybean systems increased aggregate-associated N and soil N pools. Inclusion of leguminous cover crops without N fertilizer application reduced N[subscript]2O emissions and provided additional C accumulation and N uptake, contributing to increased grain yield of the following cereal grain crop.
34

Cover crops for horseweed [Conyza canadensis (L.)] control before and during a soybean crop

Christenson, Andi Marie January 1900 (has links)
Master of Science / Department of Agronomy / J. Anita Dille / Kraig Roozeboom / Increasing numbers of herbicide-resistant weed species require alternative methods of weed suppression to be examined. This study quantified the interaction between various cover crop or herbicide systems and horseweed [Conyza canadensis (L.)] growth. Fall cover crops of winter wheat [Triticum aestivum (L.)], winter rye [Secale cereal (L.)], barley [Hordeum vulgare (L.)] and annual ryegrass [Lolium multiflorum (L.)] were seeded in November 2012 and 2013. Spring cover crop of oat [Avena sativa (L.)] was seeded in April 2013 or rye was seeded in March 2014. All cover crops were no-till seeded into grain sorghum stubble [Sorghum bicolor (L.) Moench]. Four herbicide treatments were fall or spring applied, with and without residual. The spring non-residual treatment was also applied to plots of winter rye. Cover crop plots were split and terminated with a roller crimper or glyphosate application prior to soybean [Glycine max (L.) Merr.] planting to determine the effect of termination method on treatment performance. Soybean was planted in June 2013 and May 2014 and mechanically harvested in October of both years. Horseweed density, biomass accumulation, and soybean yield data were quantified. Horseweed height, whole plant seed production, and seed subsamples were recorded in the untreated fallow control, winter wheat, and winter rye plots in 2014. Horseweed suppression by winter rye approached 90%, levels similar to suppression by herbicide systems. In both years, herbicide plots had less than half the horseweed biomass than any of the cover crop systems. In 2013, soybean yields in herbicide plots were at least 1,500 kg ha[superscript]-1, nearly more than double yields in cover crop plots. Soybean yields in 2014 were more consistent across treatments; barley and spring rye plots achieved yields equal to or greater than 2,000 kg ha[superscript]-1. Winter rye and winter wheat reduced horseweed seed production by 60% compared to the untreated fallow control, with no effect on individual seed weight. Seed production varied across plants, with the untreated control producing the greatest number of seeds. Cover crops were successful at reducing horseweed biomass, suppressing horseweed pressure, preserving soybean biomass, and protecting soybean yields when compared to a fallow untreated control.
35

Managing cover crops and nitrogen fertilization to enhance sustainability of sorghum cropping systems in eastern Kansas

Preza Fontes, Giovani January 1900 (has links)
Master of Science / Department of Agronomy / Peter J. Tomlinson / Growing cover crops (CCs) in rotation with cash crops has become popular in recent years for their many agroecosystem benefits, such as influencing nutrient cycling and reducing nutrient losses. This study aimed to (i) determine the long-term effects of no-till with CCs and varying nitrogen (N) rates on subsequent sorghum [Sorghum bicolor (L.) Moench] yield and yield components, (ii) assess how CCs affect the N dynamic in the soil-crop relationship during the growing season and N use efficiency (NUE) of sorghum, and (iii) define and evaluate important periods of nitrous oxide (N₂O) losses throughout the cropping system. Field experiments were conducted during the 2014-15 and 2015-16 growing season in a three-year no-till winter wheat (Triticum aestivum L.) – sorghum – soybean [Glycine max (L.) Merr] rotation. Fallow management consisted of a chemical fallow (CF) control plus four CCs and a double-crop soybean (DSB) grown after wheat harvest. Nitrogen fertilizer was subsurface banded at five rates (0, 45, 90, 135, and 180 kg ha⁻¹) after sorghum planting. On average, DSB and late-maturing soybean (LMS) provided one-third and one-half of the N required for optimum economic grain yield (90 kg N ha⁻¹), respectively; resulting in increased grain yield when compared to the other CCs and CF with 0-N application. Crimson clover (Trifolium incarnatum L.) and daikon radish (Raphanus sativus L.) had no or negative effects on sorghum yield and N uptake relative to CF across all N rates. Sorghum-sudangrass (SS) (Sorghum bicolor var. sudanese) significantly reduced N uptake and grain yield, even at higher N rates. Sorghum following CF had the lowest NUE at optimum grain yield when compared to all CC treatments, suggesting that CCs have a tendency to improve NUE. Cover crops reduced N₂O emissions by 65% during the fallow period when compared to CF; however, DSB and SS increased emissions when N was applied during the sorghum phase, indicating that N fertilization might be the overriding factor. Moreover, about 50% of the total N₂O emissions occurred within 3 weeks after N application, regardless of the cover crop treatment, indicating the importance of implementing N management strategies to reduce N₂O emissions early in the growing season. Overall, these results show that CC selection and N fertilizer management can have significant impacts on sorghum productivity and N₂O emissions in no-till cropping systems.
36

THE EFFICACY OF COVER CROPS FOR POLLINATOR HABITAT PROVISION AND WEED SUPPRESSION IN A SOUTHERN ILLINOIS AGROECOSYSTEM

Bryan, Casey J. 01 May 2019 (has links)
Increases in agricultural intensification over the past century have resulted in significant alterations to the rural landscape across the Midwest. Pollinators are essential to sustain natural and managed ecosystems. They are vital for food production and their declines have been linked, in part, to a rise in intensive agricultural practices. There is a recognized need among numerous stakeholders to build sustainability into the management of agroecosystems to protect both the biotic and abiotic resources of these systems. The use of cover crops is gaining interest among agricultural producers for benefits such as improving water quality and soil health. Cover cropping systems have the potential to provide floral resources to pollinators and suppress problematic driver weeds. The overall objective of this study was to quantify the effects of cover crops on plant and pollinator biodiversity within agricultural systems. This study aimed to characterize the pollinator diversity indicative of the patchwork mosaic forest-agroecosystem of Crab Orchard National Wildlife Refuge; evaluate the roles cover crop treatments play in supporting pollinator diversity and weed suppression benefits in a conventionally managed system; and provide the basis of recommendations for sustainable weed suppression tactics and for enhancing the quality of pollinator habitat within agricultural systems.
37

Decomposição de resíduos vegetais de culturas de entressafra em sistema de semeadura direta e efeitos nos atributos químicos de um Latossolo e na produtividade de soja e milho /

Marcelo, Adolfo Valente. January 2011 (has links)
Orientador: José Eduardo Corá / Banca: Rogério Peres Soratto / Banca: Luís Reynaldo Ferraciú Alleoni / Banca: José Carlos Barbosa / Banca: Carlos Eduardo Angeli Furlani / Resumo: Em sistema de semeadura direta, os resíduos das culturas de entressafra são utilizados para protegerem a superfície do solo dos agentes erosivos e promoverem a ciclagem de nutrientes. O objetivo desse trabalho foi avaliar o efeito de sequências de culturas na quantidade, qualidade, decomposição e liberação de nutrientes dos resíduos vegetais de culturas de entressafra, bem como a cobertura do solo proporcionada pelos resíduos, na fertilidade do solo, nas frações particulada e associada aos minerais de C, nas substâncias húmicas do solo e na produtividade de milho e soja cultivados no verão, em região de clima tropical. O experimento foi conduzido em Jaboticabal, SP (48°15'22'' W e 21°18'58'' S), em um Latossolo Vermelho eutrófico. O delineamento experimental foi em faixas, com três repetições. Os tratamentos foram constituídos pela combinação de três sequências de culturas de verão (rotação soja-milho, monocultura de milho e monocultura de soja) com sete culturas de entressafra (milho, sorgo, girassol, crotalária, guandu, nabo forrageiro e milheto). O experimento foi iniciado em 2002 e o presente estudo se refere aos anos agrícolas 2008/2009 e 2009/2010. Avaliaram-se as quantidades de matéria seca e acúmulo de N, P, K, Ca, Mg e S pelas culturas de entressafra, bem como a dinâmica de decomposição e liberação dos nutrientes, por meio da utilização de sacolas de decomposição, com os seguintes períodos de avaliação: 15, 30, 60, 120 e 180 dias. A cobertura do solo foi avaliada após o manejo e ao final de cada ano agrícola. Amostras de solo foram coletadas nas camadas 0-10, 10-20 e 20-30 cm de profundidade em duas ocasiões, antes da semeadura das culturas de entressafra, em março, e de verão, em outubro, nos anos de 2008 e 2009. As amostras de solo foram submetidas às análises químicas para determinação dos teores... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In no-tillage system, the offseason crops residues are expected to maintain the soil covered in order to control soil erosion and to promote the nutrients cycling. The objective of this study was to evaluate the offseason crops dry matter quality and production, soil cover, residues decomposition and nutrient release and their effects on soil fertility, C content of humic substances, particulate and mineral associated organic matter fractions and summer maize and soybean yield. A field experiment has been carried out on a Rhodic Eutrudox at Jaboticabal, SP, Brazil (48°15'22'' W and 21°18'58'' S). A randomized split-block design with three replications was used. The treatments were the combination of three summer crops sequences (soybean-corn rotation, monoculture of corn and monoculture of soybean) with seven offseason crops (maize, grain sorghum, sunflower, sunn hemp, pigeon pea, oilseed radish and pearl millet). The cultivations started in 2002 and this study is related to 2008/2009 and 2009/2010 growing seasons. The offseason crops dry matter production and N, P, K, Ca, Mg and S accumulations were evaluated at management moment. The period of time to measure the residue decomposition and the nutrient release was 15, 30, 60, 120 and 180 days, using litter bags. The soil cover was evaluated after the offseason crops management and at the end of each growing season. The soil was sampled at 0-10, 10-20 and 20-30 cm soil depths in two occasions, before the offseason crops sowing, at March, and before the summer crops sowing, at October, in 2008 and 2009. Total organic C, pH, P, K, Ca, Mg and H+Al were determined in each soil samples. The soil samples obtained on October at 0-10 cm were submitted for physical and chemical organic matter fractionation, for particulate, mineral-associated, humic acid, fulvic acid and humin C content determination. The summer monoculture... (Complete abstract click electronic access below) / Doutor
38

Cover crops and biochemical functional diversity in relation to nitrogen availability in soil

Burket, John Zimmerman 07 May 1998 (has links)
Nitrogen availability in agricultural soils from fertilizer, plant residue inputs, and soil organic matter has important implications beyond crop yield. Legume winter cover crops and one fourth the recommended N rate on sweet corn resulted in yields equivalent to those at the recommended rate in the Willamette Valley of western Oregon. Cereal rye winter crops absorbed an average of 40 kg N/ha that otherwise would have been leached, but did not effectively replace fertilizer N. Cereal rye as a cover crop therefore shows an ability to immobilize N from fertilizer. This was further confirmed in an experiment with "N labeled urea where results showed that N derived from fertilizer in sweet corn or cereal rye plant residue was less available for crop uptake and loss from the system than inorganic N or N directly immobilized from fertilizer. Losses of N from fertilizer ranged from 40 to 73% of that which was in the soil over winter. Mineralization of organic matter N is an important process in N availability, especially when cover crops are used to replace fertilizer. Finding a general indicator or predictor of N mineralization in soils would help in reducing fertilizer N costs and leaching of inorganic N that is applied in excess of crop needs. In a screening of 17 biological and chemical properties of 19 differently managed soils from around the state of Oregon, a model using total soil N and ��-glucosidase activity provided the best model of mineralized N uptake by ryegrass. Biological activity is primarily responsible for the transformations that result in N availability in soils. Management of soils directly impacts soil biology, and results from multivariate analyses of biological and chemical parameters in differently managed soils showed that disturbance creates an overriding common biochemical state in soils. Beyond disturbance, vegetation and the nature of organic inputs also impart recognizable multivariate patterns in soils managed differently. These results suggest that indicators independent of soil type may be used to discern effects of management on agricultural soils. / Graduation date: 1999
39

Nitrate leaching and model evaluation under winter cover crops

Minshew, Hudson F. 11 November 1998 (has links)
Graduation date: 1999
40

Impact of a red clover winter cover crop on carbon and nitrogen mineralization by microorganisms in soil aggregates

Ndiaye, Aissatou 24 November 1998 (has links)
Although legumes have been widely studied for their nitrogen-fixing ability, it is uncertain to what extent legume cover crops achieve their nitrogen-fixing potential under the climatic conditions encountered in western Oregon. Furthermore, it is unknown what factors control the proportions of legume cover crop N that are either sequestered into soil organic matter, or that contribute to the N requirements of the following summer crop. Soil was sampled in mid-September 1997, after harvest of a summer broccoli crop, from plots located at the North Willamette Research and Extension Center, Aurora, Oregon. Soil was sampled from main plots that had been either winter cover cropped with red clover (LN��� and LN���) or fallowed during the winter period (FN��� and FN���), and specifically from sub-plots in which the following summer crop had received either zero (N���) or an intermediate (N���) rate of N fertilizer as urea. Levels of total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and readily mineralizable C and N were measured in both whole soil samples and in different aggregate-size classes (<0.25, 0.25-0.5 0.5-1.0, 1.0-2.0, and 2-5mm) prepared by dry sieving the soil. Aggregate size-class distribution was not affected by the cover crop treatment. Although there was no significant effect of cover crop treatment on either TKN or TOC levels in whole soil samples, TOC levels were consistently higher in the small aggregate size-classes <1 mm of the fallow than the legume treatment. There was a significantly higher level of mineralizable C in the <0.25 mm size class of the legume than the fallow treatment. There was a trend for the level of mineralizable N to be greater in soil from the legume than the fallow treatment. However, N fertilizer had a significant positive effect on the level of readily mineralizable N in both fallow and legume cover-cropped treatments, it had a negative effect on TKN levels among all aggregate-size classes. There were differences in the levels of mineralizable N measured among the aggregate-size classes, and immobilization of N between 20 and 40 days of incubation also differed among the aggregate-size classes. / Graduation date: 1999

Page generated in 0.0794 seconds