• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 13
  • 10
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Numerical methods for pricing American put options under stochastic volatility / Dominique Joubert

Joubert, Dominique January 2013 (has links)
The Black-Scholes model and its assumptions has endured its fair share of criticism. One problematic issue is the model’s assumption that market volatility is constant. The past decade has seen numerous publications addressing this issue by adapting the Black-Scholes model to incorporate stochastic volatility. In this dissertation, American put options are priced under the Heston stochastic volatility model using the Crank- Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). Due to the early exercise facility, the pricing of American put options is a challenging task, even under constant volatility. Therefore the pricing problem under constant volatility is also included in this dissertation. It involves transforming the Black-Scholes partial differential equation into the heat equation and re-writing the pricing problem as a linear complementary problem. This linear complimentary problem is solved using the Crank-Nicolson finite difference method in combination with the Projected Over-Relaxation method (PSOR). The basic principles to develop the methods necessary to price American put options are covered and the necessary numerical methods are derived. Detailed algorithms for both the constant and the stochastic volatility models, of which no real evidence could be found in literature, are also included in this dissertation. / MSc (Applied Mathematics), North-West University, Potchefstroom Campus, 2013
22

Méthodes numériques avec des éléments finis adaptatifs pour la simulation de condensats de Bose-Einstein / Adaptive Finite-element Methods for the Numerical Simulation of Bose-Einstein Condensates

Vergez, Guillaume 06 June 2017 (has links)
Le phénomène de condensation d’un gaz de bosons lorsqu’il est refroidi à zéro degrés Kelvin futdécrit par Einstein en 1925 en s’appuyant sur des travaux de Bose. Depuis lors, de nombreux physiciens,mathématiciens et numériciens se sont intéressés au condensat de Bose-Einstein et à son caractère superfluide. Nous proposons dans cette étude des méthodes numériques ainsi qu’un code informatique pour la simulation d’un condensat de Bose-Einstein en rotation. Le principal modèle mathématique décrivant ce phénomène physique est une équation de Schrödinger présentant une non-linéarité cubique,découverte en 1961 : l’équation de Gross-Pitaevskii (GP). En nous appuyant sur le logiciel FreeFem++,nous nous servons d’une discrétisation spatiale en éléments-finis pour résoudre numériquement cette équation. Une méthode d’adaptation du maillage à la solution et l’utilisation d’éléments-finis d’ordre deux nous permet de résoudre finement le problème et d’explorer des configurations complexes en deux ou trois dimensions d’espace. Pour sa version stationnaire, nous avons développé une méthode de gradient de Sobolev ou une méthode de point intérieur implémentée dans la librairie Ipopt. Pour sa version instationnaire, nous utilisons une méthode de Time-Splitting combinée à un schéma de Crank-Nicolson ou une méthode de relaxation. Afin d’étudier la stabilité dynamique et thermodynamique d’un état stationnaire, le modèle de Bogoliubov-de Gennes propose une linéarisation de l’équation de Gross-Pitaevskii autour de cet état. Nous avons élaboré une méthode permettant de résoudre ce système aux valeurs et vecteurs propres, basée sur un algorithme de Newton ainsi que sur la méthode d’Arnoldi implémentée dans la librairie Arpack. / The phenomenon of condensation of a boson gas when cooled to zero degrees Kelvin was described by Einstein in 1925 based on work by Bose. Since then, many physicists, mathematicians and digitizers have been interested in the Bose-Einstein condensate and its superfluidity. We propose in this study numerical methods as well as a computer code for the simulation of a rotating Bose-Einstein condensate.The main mathematical model describing this phenomenon is a Schrödinger equation with a cubic nonlinearity, discovered in 1961: the Gross-Pitaevskii (GP) equation. By using the software FreeFem++ and a finite elements spatial discretization we solve this equation numerically. The mesh adaptation to the solution and the use of finite elements of order two allow us to solve the problem finely and to explore complex configurations in two or three dimensions of space. For its stationary version, we have developed a Sobolev gradient method or an internal point method implemented in the Ipopt library. .For its unsteady version, we use a Time-Splitting method combined with a Crank-Nicolson scheme ora relaxation method. In order to study the dynamic and thermodynamic stability of a stationary state,the Bogoliubov-de Gennes model proposes a linearization of the Gross-Pitaevskii equation around this state. We have developed a method to solve this eigenvalues and eigenvector system, based on a Newton algorithm as well as the Arnoldi method implemented in the Arpack library.
23

Efficient Numerical Methods for Heart Simulation

2015 April 1900 (has links)
The heart is one the most important organs in the human body and many other live creatures. The electrical activity in the heart controls the heart function, and many heart diseases are linked to the abnormalities in the electrical activity in the heart. Mathematical equations and computer simulation can be used to model the electrical activity in the heart. The heart models are challenging to solve because of the complexity of the models and the huge size of the problems. Several cell models have been proposed to model the electrical activity in a single heart cell. These models must be coupled with a heart model to model the electrical activity in the entire heart. The bidomain model is a popular model to simulate the propagation of electricity in myocardial tissue. It is a continuum-based model consisting of non-linear ordinary differential equations (ODEs) describing the electrical activity at the cellular scale and a system of partial differential equations (PDEs) describing propagation of electricity at the tissue scale. Because of this multi-scale, ODE/PDE structure of the model, splitting methods that treat the ODEs and PDEs in separate steps are natural candidates as numerical methods. First, we need to solve the problem at the cellular scale using ODE solvers. One of the most popular methods to solve the ODEs is known as the Rush-Larsen (RL) method. Its popularity stems from its improved stability over integrators such as the forward Euler (FE) method along with its easy implementation. The RL method partitions the ODEs into two sets: one for the gating variables, which are treated by an exponential integrator, and another for the remaining equations, which are treated by the FE method. The success of the RL method can be understood in terms of its relatively good stability when treating the gating variables. However, this feature would not be expected to be of benefit on cell models for which the stiffness is not captured by the gating equations. We demonstrate that this is indeed the case on a number of stiff cell models. We further propose a new partitioned method based on the combination of a first-order generalization of the RL method with the FE method. This new method leads to simulations of stiff cell models that are often one or two orders of magnitude faster than the original RL method. After solving the ODEs, we need to use bidomain solvers to solve the bidomain model. Two well-known, first-order time-integration methods for solving the bidomain model are the semi-implicit method and the Godunov operator-splitting method. Both methods decouple the numerical procedure at the cellular scale from that at the tissue scale but in slightly different ways. The methods are analyzed in terms of their accuracy, and their relative performance is compared on one-, two-, and three-dimensional test cases. As suggested by the analysis, the test cases show that the Godunov method is significantly faster than the semi-implicit method for the same level of accuracy, specifically, between 5 and 15 times in the cases presented. Second-order bidomain solvers can generally be expected to be more effective than first-order bidomain solvers under normal accuracy requirements. However, the simplest and the most commonly applied second-order method for the PDE step, the Crank-Nicolson (CN) method, may generate unphysical oscillations. We investigate the performance of a two-stage, L-stable singly diagonally implicit Runge-Kutta method for solving the PDEs of the bidomain model and present a stability analysis. Numerical experiments show that the enhanced stability property of this method leads to more physically realistic numerical simulations compared to both the CN and Backward Euler (BE) methods.

Page generated in 0.047 seconds