• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 31
  • 12
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 146
  • 141
  • 30
  • 18
  • 17
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The evolution of LOL, the secondary metabolite gene cluster for insecticidal loline alkaloids in fungal endophytes of grasses.

Kutil, Brandi Lynn 15 May 2009 (has links)
LOL is a novel secondary metabolite gene cluster associated with the production of loline alkaloids (saturated 1-aminopyrrolizidine alkaloids with an oxygen bridge) exclusively in closely related grass-endophyte species in the genera Epichloë and Neotyphodium. In this study I characterize the LOL cluster in E. festucae, including the presentation of sequence corresponding to 10 individual lol genes as well as defining the boundaries of the cluster and evaluation of the genomic DNA region flanking LOL in E. festucae. In addition to characterizing the LOL cluster in E. festucae, I present LOL sequence from two additional species, Neotyphodium coenophialum and Neotyphodium sp. PauTG-1. Together with two recently published LOL clusters from N. uncinatum, these data allow for a powerful phylogenetic comparison of five clusters from four closely related species. There is a high degree of microsynteny (conserved gene order and orientation) among the five LOL clusters, allowing us to predict potential transcriptional co-regulatory binding motifs in lol promoter regions. The relatedness of LOL clusters is especially interesting in light of the history of interspecific hybridizations that generated the asexual, Neotyphodium lineages. In fact, three of the clusters appear to have been introduced to different Neotyphodium species by the same ancestral Epichloë species, for which present day isolates are no longer able to produce lolines. To address the evolutionary origins of the cluster we have investigated the phylogenetic relationships of particular lol ORFs to their paralogous primary metabolism genes (and gene families) from endophytes, other fungi and even other kingdoms. I present extensive evidence that at least two individual lol genes have evolved from primary metabolism genes within the fungal ancestors of endophytes, rather than being introduced via horizontal gene transfer. I also present complementation studies in Neurospora crassa exploring the functional divergence of one lol gene from its primary metabolism paralog. While it is clear that these insecticidal compounds should convey a selective advantage to the fungus and its host, thus explaining preservation of the trait, this analysis provides an exploration into the evolutionary origin and maintenance of the genes that comprise the LOL and the cluster itself.
142

Expression of Genes in <i>Neurospora crassa</i> Outside of the Quinic Acid Gene Cluster During Quinic Acid Metabolism

Savopoulos, John 08 June 2018 (has links)
No description available.
143

La RNase P mitochondriale chez Neurospora crassa

Minoiu, Ioana 12 1900 (has links)
Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée. / Abstract Ribonuclease P (RNase P) is an endonuclease that cleaves 5’- leader sequences from tRNA precursors and a few other small RNAs. In most cases, the enzyme is a ribonucleo-protein complex (ribozyme), containing an RNA subunit (P-RNA; encoded by the rnpB gene) that carries the active centre of the enzyme, plus one or more protein subunits. P-RNAs in Bacteria, Eukarya and Archaea have a highly conserved secondary structure including the core P1 and P4 helices. P4 forms the catalytic site of the ribozyme, and P1 pairs the RNA termini, stabilizing overall structure and protecting from nuclease degradation. For processing of mitochondrial (mt) tRNAs, certain eukaryotic species (e.g., Saccharomyces cerevisiae, Aspergillus nidulans) have separate mtDNA-encoded P-RNAs (of bacterial origin). Mt P-RNAs are often less conserved, and difficult to discover. To identify rnpB genes, we have developed a search tool based on sequence plus secondary structure profiles. It predicts all known eukaryotic (nuclear and organellar) rnpB genes with high confidence (based on E-values). In fungi, many ascomycetes encode a mitochondrial rnpB gene, including all members of Aspergillus. Yet, the closely related Neurospora crassa, Podospora anserina and Sordaria macrospora lack an mtDNA-encoded gene version. Instead, they contain two nuclear gene copies with slightly different sequences. My project aims to elucidate the evolution of mitochondrial RNase P in these three closely related species. We have established secondary structure models based on comparisons with the universal minimum consensus secondary structure for all nuclear gene mtP-RNAs copies in all three species. By comparison of these secondary structure models, we have established that the two nuclear copies of rnpB gene are quite distinct in sequence and structure, suggesting a specialization of function. In N. crassa, both P-RNAs are modified most likely by capping, and 5’- 3’ termini perfectly conform to P-RNA structure models that have an elongated P1 helical pairing. Furthermore, we find that the two nuclear copies of rnpB gene are present at about the same level in the cytoplasm, and that the shorter form of P-RNA (Nc1) translocates into the (soluble) mitochondrial matrix. When tracing P-RNA in different mitochondrial sub-fractions of a native gel, the presence of Nc1 and mitochondrial RNase P activity are associated. A proteomics characterization of a P-RNA complex isolated by native gel electrophoresis reveals that it contains at least 87 proteins, 73 of which are of known mitochondrial localization. Like in yeast, the complex contains proteins potentially involved in other DNA/RNA processing activities, but also in translation, in metabolism, and in protein folding. Only three proteins are of unknown function.
144

Evolution of Genes and Gene Networks in Filamentous Fungi

Greenwald, Charles Joaquin 2010 August 1900 (has links)
The Pezizomycotina, commonly known as the filamentous fungi, are a diverse group of organisms that have a major impact on human life. The filamentous fungi diverged from a common ancestor approximately 200 – 700 million years ago. Because of the diversity and the wealth of biological and genomic tools for the filamentous fungi it is possible to track the evolutionary history of genes and gene networks in these organisms. In this dissertation I focus on the evolution of two genes (lolC and lolD) in the LOL secondary metabolite gene cluster in Epichloë and Neotyphodium genera, the evolution of the MAP kinase-signaling cascade in the filamentous fungi, the regulation of the gene networks involved in asexual development in Neurospora crassa, and the identification of two genes in the N. crassa asexual development gene network, acon-2 and acon-3. I find that lolC and lolD originated as an ancient duplication in the ancestor of the filamentous fungi, which were later recruited in the LOL gene cluster in the fungal endophyte lineage. In the MAP kinase-signaling cascade, I find that the MAPK component is the most central gene in the gene network. I also find that the MAPK signaling cascade originated as three copies in the ancestor to eukaryotes, an arrangement that is maintained in filamentous fungi. My observations of gene expression profiling during N. crassa asexual development show tissue specific expression of genes. Both the vegetative mycelium and the aerial hyphae contribute to the formation of macroconidiophores. Also, with the help of genomic tools recently developed by researchers in the filamentous fungal community, I identified NCU00478 and NCU07617 as the genes with mutations responsible for two aconidial strains of N. crassa, acon-2 and acon-3 respectively.
145

La RNase P mitochondriale chez Neurospora crassa

Minoiu, Ioana 12 1900 (has links)
Résumé La Ribonucléase P (RNase P) est une enzyme principalement reconnue pour sa participation à la maturation en 5’des ARN de transfert (ARNt). Cependant, d’autres substrats sont reconnus par l’enzyme. En général, la RNase P est composée d’une sous-unité ARN (le P-ARN, codé par le gène rnpB) qui porte le centre actif de l’enzyme et d’une ou de plusieurs sous-unités protéiques (la P-protéine). Les P-ARN chez toutes les bactéries, la majorité des archéobactéries et dans le génome nucléaire de la plupart des eucaryotes, possèdent généralement une structure secondaire très conservée qui inclut le noyau (P1-P4); l’hélice P4 constitue le site catalytique de l’enzyme et l’hélice P1 apparie les extrémités du P-ARN en stabilisant sa structure globale. Les P-ARN mitochondriaux sont souvent moins conservés et difficiles à découvrir. Dans certains cas, les seules régions de structure primaire qui restent conservées sont celles qui définissent le P4 et le P1. Pour la détection des gènes rnpB, un outil de recherche bioinformatique, basé sur la séquence et le profil de structure secondaire, a été développé dans le laboratoire. Cet outil permet le dépistage de toutes les séquences eucaryotes (nucléaires et mitochondriales) du gène avec une très grande confiance (basée sur une valeur statistique, E-value). Chez les champignons, plusieurs ascomycètes encodent un gène rnpB dans leur génome mitochondrial y compris tous les membres du genre d’Aspergillus. Cependant, chez les espèces voisines, Neurospora crassa, Podospora anserina et Sordaria macrospora, une version mitochondriale de ce gène n’existe pas. Au lieu de cela, elles contiennent deux copies nucléaires du gène, légèrement différentes en taille et en contenu nucléotidique. Mon projet a été établi dans le but d’éclaircir l’évolution de la RNase P mitochondriale (mtRNase P) chez ces trois espèces voisines d’Aspergillus. En ce qui concerne les résultats, des modèles de structures secondaires pour les transcrits de ces gènes ont été construits en se basant sur la structure consensus universelle de la sous-unité ARN de la RNase P. Pour les trois espèces, par la comparaison de ces modèles, nous avons établi que les deux copies nucléaires du gène rnpB sont assez distinctes en séquence et en structure pour pouvoir y penser à une spécialisation de fonction de la RNase P. Chez N. crassa, les deux P-ARN sont modifiés probablement par une coiffe et les extrémités 5’, 3’ sont conformes à nos modèles, ayant un P1 allongé. Encore chez N. crassa, nous avons constaté que les deux copies sont transcrites au même niveau dans le cytoplasme et que la plus petite et la plus stable d’entre elles (Nc1) se retrouve dans l’extrait matriciel mitochondrial. Lors du suivi du P-ARN dans diverses sous-fractions provenant de la matrice mitochondriale soluble, Nc1 est associée avec l’activité de la RNase P. La caractérisation du complexe protéique, isolé à partir de la fraction active sur un gel non dénaturant, révèle qu’il contient au moins 87 protéines, 73 d’entre elles ayant déjà une localisation mitochondriale connue. Comme chez la levure, les protéines de ce complexe sont impliquées dans plusieurs fonctions cellulaires comme le processing de l’ADN/ARN, le métabolisme, dans la traduction et d’autres (par exemple : la protéolyse et le repliement des protéines, ainsi que la maintenance du génome mitochondrial). Pour trois protéines, leur fonction est non déterminée. / Abstract Ribonuclease P (RNase P) is an endonuclease that cleaves 5’- leader sequences from tRNA precursors and a few other small RNAs. In most cases, the enzyme is a ribonucleo-protein complex (ribozyme), containing an RNA subunit (P-RNA; encoded by the rnpB gene) that carries the active centre of the enzyme, plus one or more protein subunits. P-RNAs in Bacteria, Eukarya and Archaea have a highly conserved secondary structure including the core P1 and P4 helices. P4 forms the catalytic site of the ribozyme, and P1 pairs the RNA termini, stabilizing overall structure and protecting from nuclease degradation. For processing of mitochondrial (mt) tRNAs, certain eukaryotic species (e.g., Saccharomyces cerevisiae, Aspergillus nidulans) have separate mtDNA-encoded P-RNAs (of bacterial origin). Mt P-RNAs are often less conserved, and difficult to discover. To identify rnpB genes, we have developed a search tool based on sequence plus secondary structure profiles. It predicts all known eukaryotic (nuclear and organellar) rnpB genes with high confidence (based on E-values). In fungi, many ascomycetes encode a mitochondrial rnpB gene, including all members of Aspergillus. Yet, the closely related Neurospora crassa, Podospora anserina and Sordaria macrospora lack an mtDNA-encoded gene version. Instead, they contain two nuclear gene copies with slightly different sequences. My project aims to elucidate the evolution of mitochondrial RNase P in these three closely related species. We have established secondary structure models based on comparisons with the universal minimum consensus secondary structure for all nuclear gene mtP-RNAs copies in all three species. By comparison of these secondary structure models, we have established that the two nuclear copies of rnpB gene are quite distinct in sequence and structure, suggesting a specialization of function. In N. crassa, both P-RNAs are modified most likely by capping, and 5’- 3’ termini perfectly conform to P-RNA structure models that have an elongated P1 helical pairing. Furthermore, we find that the two nuclear copies of rnpB gene are present at about the same level in the cytoplasm, and that the shorter form of P-RNA (Nc1) translocates into the (soluble) mitochondrial matrix. When tracing P-RNA in different mitochondrial sub-fractions of a native gel, the presence of Nc1 and mitochondrial RNase P activity are associated. A proteomics characterization of a P-RNA complex isolated by native gel electrophoresis reveals that it contains at least 87 proteins, 73 of which are of known mitochondrial localization. Like in yeast, the complex contains proteins potentially involved in other DNA/RNA processing activities, but also in translation, in metabolism, and in protein folding. Only three proteins are of unknown function.
146

Blue light-dependent development of the filamentous fungus Aspergillus nidulans / Entwicklung des filamentösen Pilzes Aspergillus nidulans in blauem Licht

Bayram, Özgür 01 November 2007 (has links)
No description available.

Page generated in 0.0226 seconds