111 |
Caractérisations biochimiques et biologiques des collagènes de méduses / Biochemical and biological characterizations of jellyfish collagensAddad, Sourour 06 January 2010 (has links)
Ce travail a été entrepris dans le but de caractériser biochimiquement et biologiquement les collagènes de méduse. l’objectif de notre travail a été d’évaluer ce matériel en vue de sa valorisation pour l’élaboration de biomatériaux à usage médical. dans un premier temps, nous avons optimisé les techniques d’extractions des collagènes de quatre espèces de méduses : rhizostoma pulmo, cotylorhiza tuberculata, pelagia noctiluca et aurelia aurita. l’étude de la stabilité thermique par dichroïsme circulaire des collagènes nous a montré que la température de dénaturation des collagènes de rhizostoma pulmo était de 28,9°c. nous avons choisi de réaliser la réticulation des collagènes de méduse par la méthode des carbodiimides (edc/nhs). cette méthode nous a permis d’augmenter la température de dénaturation jusqu’à 33°c (versus 28,9°c). l’étude de l’interaction entre les cellules d’origine humaine (mg63 et fibroblastes) et les collagènes de méduses, nous a permis de démontrer qu’elles étaient capables d’adhérer aux collagènes de méduses natifs ou dénaturés. des immunomarquages de la vinculine des cellules mg63 et des fibroblastes sur collagènes de méduse natifs ou dénaturés nous ont permis de caractériser les adhésions mises en places par ces deux types cellulaires. l’analyse des milieux de culture des cellules mg63 et des fibroblastes par zymographie sur collagènes de méduse natifs ou dénaturés nous a permis de mettre en évidence que des mmps d’origine humaine, seraient capables de dégrader les collagènes de méduses. nous pouvons dans ce cas estimer que le collagène de méduse serait un bon substrat pour l’élaboration de biomatériaux résorbables / This work was undertaken to characterize biochemically and biologically jellyfish collagen. the aim of our study was to evaluate the material for the development of biomaterials for medical use. initially, we optimized the technical extraction of collagen from four species of jellyfishes: rhizostoma pulmo, cotylorhiza tuberculata, pelagia noctiluca and aurelia aurita. the study of thermal stability by circular dichroism of collagen has shown that the denaturation temperature of rhizostoma pulmo collagens was 28.9 ° c. we chose to achieve crosslinking of collagen of jellyfish by the method of carbodiimides (edc/nhs). this method allowed us to increase the denaturation temperature to 33 ° c (vs. 28.9 ° c). the study of the interaction between human cells (mg63 and fibroblasts) and jellyfish collagen, demonstrated that they were able to adhere native or denatured jellyfish collagen. the immunostains of vinculin of mg63 cells and fibroblasts seeded on native or denatured jellyfish collagen, allowed us to characterize the focal adhesions of these two cell types. analysis of culture media of mg63 cells and fibroblasts by collagen zymography on native or denatured jellyfish collagen gels, allowed us to demonstrate that mmps of human origin, are able to degrade jellyfish collagen. we estimate in this case that the jellyfish collagen is a good substrate for the development of resorbable biomaterials
|
112 |
Estudo da desvulcanização do SBR por micro-ondas em processo contínuo / Study of devulcanization SBR by microwave in continuos processHirayama, Denise 09 October 2009 (has links)
A reciclagem de diversos tipos de materiais tem adquirido importância nos últimos anos. Problemas ambientais graves como o acúmulo de rejeitos e a poluição atmosférica, causados pelo crescente consumo de materiais poliméricos, incentivam estudos para o desenvolvimento de diferentes formas de reaproveitamento. Entretanto, a reciclagem de polímeros elastômeros tem demonstrado grande complexidade, pois o material depois de vulcanizado não pode ser remoldado pelo simples aquecimento. A desvulcanização por microondas é uma técnica promissora para contornar este problema, uma vez que possibilita restituir a capacidade de moldagem dos elastômeros. Neste trabalho foi feito um estudo sobre a desvulcanização por micro-ondas em processo contínuo e em batelada do elastômero estireno-butadieno (SBR) com diferentes quantidades de negro de fumo e em diferentes condições de processamento, de modo a avaliar os processos de desvulcanização e esclarecer melhor os fenômenos e reações químicas envolvidas. A eficiência dos diferentes sistemas de desvulcanização adotados foi avaliada por meio de análises termogravimétricas (TG), dinâmico-mecânicas (DMA), calorimetria exploratória diferencial (DSC), espectroscopia no infravermelho (FTIR), espectrometria de ressonância magnética nuclear (RMN), densidade de ligação cruzada e teor de gel. A desvulcanização foi mais efetiva no elastômero SBR com maiores teores de negro de fumo, empregando o sistema de desvulcanização em batelada com uma única fonte de radiação, enquanto que a desvulcanização contínua não apresentou resultados relevantes para o sistema adotado. O material desvulcanizado demonstrou mudanças químicas e físicas consideráveis na sua estrutura. Assim, a reciclagem de elastômeros utilizando a energia das micro-ondas torna-se possível e provoca mudanças estruturais no material para borracha com altos teores de negro de fumo utilizando o sistema batelada. / The recycling of several materials has acquired importance in the last few years. Serious environmental problems as the increase in waste material and air pollution, caused by the growing consumption of polymeric material, stimulate works to development of distinct ways of reclamations. However, the recycling of elastomers has demonstrated more complexity than other polymeric materials because, after vulcanized, the material can not be remolded by simple heating. The microwave devulcanization is a promissory technique to solve this problem, in as it makes it possible to replace the remold capacity of elastomers. In this work it was studied the devulcanization by microwave in continuous and batch processes of styrene-butadiene rubber (SBR) with different amount of carbon black (CB) and in different process conditions, to evaluate the devulcanization process and to clarify the involved phenomena and chemical. The efficiency of distinct devulcanization systems was evaluated through thermogravimetric analyses (TG), dynamic-mechanical analysis (DMA), differential scattering calorimetric (DSC), Fourier transformed infrared (FTIR), nuclear magnetic resonance (NMR), crosslink density and gel content analysis. The devulcanization was more effective in SBR elastomer with higher amount of carbon black, used the batch systems devulcanization with a single source of radiation, whereas the continuous devulcanization did not show relevant results to the adopted system. The devulcanized material exhibited considerable chemical and physical alteration in its structure. Thus, the elastomers recycling using the microwave energy is possible and generates structural modification in the material for rubber with high amount of carbon black in batch system.
|
113 |
Desenvolvimento de filmes biodegradáveis à base de proteína da torta de mamona (Ricinus communis L.) modificada com glioxal e reforçados com fibras de celulose / Development of films based on proteins extracted from castor bean (Ricinus communis L.) cake crosslinked with glyoxal and reinforced with cellulose pulp fibersOliveira, Tiara Gomes de 22 February 2013 (has links)
A torta de mamona é um resíduo gerado da extração de óleo da mamona, que tem potencial para matéria prima para a produção de filmes biodegradáveis. Filmes a base de proteínas têm limitações mecânica. Assim, as propriedades físicas destes materiais biodegradáveis podem ser melhoradas com o uso de agentes químicos, como reticulantes, e de fibras vegetais, como material de reforço. Neste sentido, o objetivo geral desta dissertação foi o desenvolvimento de filmes biodegradáveis à base de proteína extraída da torta da mamona, modificada com glioxal, e reforçados com fibras da polpa de celulose, para emprego na agricultura. Os objetivos específicos foram a avaliação das fibras de celulose em relação ao ganho de umidade, microscopia e estrutura química, e a avaliação do efeito da concentração de fibras sobre as propriedades mecânicas (tração e perfuração), cor, opacidade, brilho, umidade, solubilidade, permeabilidade ao vapor de água, microestrutura, propriedades térmicas, e estrutura química através de espectroscopia de infravermelho com transformada de Fourier. As proteínas foram extraídas da torta de mamona em um reator com controle digital de temperatura (50 ºC), de pH (12, com NaOH) e de agitação (400 rpm), com capacidade para 5 Litros. As fibras de celulose foram dispersas em água com agitador de alta rotação. Os filmes foram preparados por desidratação de soluções formadoras de filmes (SFF) com 6g de proteína/100 g de SFF, 5g glioxal/100g de proteína, 30 g de glicerol/100 g de proteína e 0; 2,5; 5; 7,5; 10 e 12,5g de fibras/100 g de proteína. A adição de fibras não mostrou efeito sobre a espessura, umidade, solubilidade em água e permeabilidade ao vapor de água dos filmes. Entretanto, as propriedades mecânicas do material melhoraram em função da concentração de fibras. O acréscimo de fibra provocou aumento na força de perfuração, tensão na ruptura e módulo de elasticidade e diminuição na deformação dos filmes. A adição de fibras também exerceu efeito sobre a cor, opacidade e brilho dos compósitos. Os resultados das análises por microscopia eletrônica de varredura permitiu verificar que as fibras de celulose estavam bem dispersas na matriz do filme, explicando seu efeito sobre as propriedades mecânicas dos filmes. E, as análises por espectroscopia de infravermelho com transformada de Fourier corroboraram com esses resultados. O reforço com fibras mostrou-se eficiente e uma excelente alternativa para a produção de filmes a base de biopolímeros. / Castor bean (Ricinus communis L.) cake is a by product of the extraction process of castor oil, which has potential for biodegradable films production. Proteins-based films have mechanical limitations; however it physical properties can be improved with the use of chemical agents, as cross linker, and of vegetal fibers, as reinforcement load. Therefore, the aim of this work was the development of films based on proteins extracted from castor bean (Ricinus communis L.) cake crosslinked with glyoxal and reinforced with cellulose pulp fibers, to be used in agriculture. More specifically, the objectives of this work were the evaluation of cellulose fibers, moisture gain, microstructure and chemical structure, and the evaluation of the effect of fiber content on thickness, moisture content, mechanical properties (by tensile and puncture tests), color, opacity, gloss, solubility in water, water vapor permeability, color, opacity, gloss, microstructure by scanning electron microscopy, and chemical structure by Fourier transform infrared spectroscopy. Proteins were extracted from castor beans cake in a reactor with digital temperature control (50ºC), pH (12, with NaOH) and agitation (400 rpm) with 5L capacity. Cellulose fibers were dispersed in water using a high shear stirrer. Films were prepared by dehydration of film-forming solutions (FFS) with 6g protein/100g FFS, 5g glyoxal/100g protein, 30g glycerol/100g protein and 0; 2.5; 5; 7.5; 10 and 12.5g cellulose fibers/100g protein. Fibers content had no effect on thickness, moisture content, solubility in water and water vapor permeability of films. Nevertheless, the mechanical properties of films were improved as a function of fiber concentration. The increasing in fibers concentration increased puncture force, tensile strength and elastic modulus and decreased films deformation. The addition of fibers also had an effect on color, opacity and gloss of composites. The results of scanning electron microscopy showed that cellulose fibers were well dispersed in the film matrix, explaining their effect on mechanical properties of films. Additionally, analysis by Fourier transform infrared spectroscopy corroborated with these results. Fiber reinforcement was effective and seems to be a great alternative for the production of films based on biopolymers.
|
114 |
Rapid and Uniform Cell Seeding on Fibrin Microthreads to Generate Tissue Engineered MicrovesselsParekh, Darshan P 05 May 2010 (has links)
A wide variety of techniques have been explored to synthesize small diameter tissue engineered blood vessels. Toward this end, we are exploring direct cell seeding and culture on tubular mandrels to create engineered vascular tissues. In the present study, v-shaped channels cast from polydimethyl siloxane (PDMS) were used as cell seeding wells. Fibrin microthreads placed in the chamber were used as model tubular seeding mandrels. Human mesenchymal stem cells (hMSCs) were seeded onto fibrin microthreads in v-shaped channels for 4 hours. Cell attachment to the microthreads was confirmed visually by Hoechst nuclear staining and a cell quantification assay showed that 5,114 ± 339 cells attached per 1 cm fibrin microthread sample (n = 6). Fibrin microthreads were completely degraded by hMSCs within 5 days of culture, therefore UV crosslinking was used to increase their mechanical strength and prolong the amount of time cells could be cultured on fibrin microthreads and generate tubular tissue constructs. Cell attachment was unaffected on UV-crosslinked microthreads compared to uncrosslinked microthreads, resulting in a count of 4,944 ± 210 cells per 1 cm of fibrin microthread sample (n = 3). Long term culture of the hMSCs on the UV-crosslinked fibrin microthreads showed an increase in cell number over time to 11,198 ± 582 cells per cm of microthread after 7 days with 92% cell viability (CYQUANT NF/DEAD staining) and evidence of cell proliferation. The results show that the v-well cell seeding technique was effective in promoting rapid hMSC attachment on UV-crosslinked fibrin microthreads and encouraged their growth, maintained viability and also promoted their proliferation over the culture period. In conclusion, the technique could serve as an efficient model system for rapid formation of tissue engineered vascular grafts.
|
115 |
Two Wavelength High Intensity Irradiation for Effective Crosslinking of DNA to ProteinGuler, Emine 09 April 2004 (has links)
Protein-DNA crosslinking is an important method to study protein-DNA interactions. Crosslinking by short pulsed UV lasers is a potentially powerful tool that results in efficient crosslinking, apparently by a two photon process. However, the major problem in using UV laser crosslinking is that the conditions which lead to high crosslinking efficiency also result in high DNA damage. Previously, it has been shown that a combination of femtosecond laser pulses at two different wavelengths, in the UV (266 nm) and the visible range (400 nm), increases the effective crosslinking yield (i.e. higher crosslinking yields with reduced DNA damage). This new strategy has the advantage that the intensity of the UV pulse for the first excitation step can be kept low, leading to lower UV-induced DNA damage and the second pulse at a visible wavelength can provide enough energy for the UV excited bases to cross their ionization threshold without damaging the DNA. The objective of this thesis project was to develop a novel UV laser cross-linking technique that would permit higher effective crosslinking yields with the commonly used pulses in the nanosecond (ns) range. To serve this purpose we tried to extend the two-wavelength femto second laser irradiation approach to longer duration pulses. We chose MBP-PIF3 protein and its target G-box DNA motif as a model system. Before ultraviolet irradiation of the protein-DNA complexes in vitro, the specific binding interaction of purified MBP-PIF3 protein with the G-box DNA motif was studied by Electrophoretic Mobility Shift Assay (EMSA). We irradiated the PIF3/DNA complexes with different laser systems (i.e. Nd:YAG and Dye lasers) and their combinations. We were expecting to see that the combination of UV laser pulses (260nm) with longer wavelength dye laser pulses (480nm) will produce higher effective crosslink yields relative to the yield from the UV pulses alone.
|
116 |
Estudo da desvulcanização do SBR por micro-ondas em processo contínuo / Study of devulcanization SBR by microwave in continuos processDenise Hirayama 09 October 2009 (has links)
A reciclagem de diversos tipos de materiais tem adquirido importância nos últimos anos. Problemas ambientais graves como o acúmulo de rejeitos e a poluição atmosférica, causados pelo crescente consumo de materiais poliméricos, incentivam estudos para o desenvolvimento de diferentes formas de reaproveitamento. Entretanto, a reciclagem de polímeros elastômeros tem demonstrado grande complexidade, pois o material depois de vulcanizado não pode ser remoldado pelo simples aquecimento. A desvulcanização por microondas é uma técnica promissora para contornar este problema, uma vez que possibilita restituir a capacidade de moldagem dos elastômeros. Neste trabalho foi feito um estudo sobre a desvulcanização por micro-ondas em processo contínuo e em batelada do elastômero estireno-butadieno (SBR) com diferentes quantidades de negro de fumo e em diferentes condições de processamento, de modo a avaliar os processos de desvulcanização e esclarecer melhor os fenômenos e reações químicas envolvidas. A eficiência dos diferentes sistemas de desvulcanização adotados foi avaliada por meio de análises termogravimétricas (TG), dinâmico-mecânicas (DMA), calorimetria exploratória diferencial (DSC), espectroscopia no infravermelho (FTIR), espectrometria de ressonância magnética nuclear (RMN), densidade de ligação cruzada e teor de gel. A desvulcanização foi mais efetiva no elastômero SBR com maiores teores de negro de fumo, empregando o sistema de desvulcanização em batelada com uma única fonte de radiação, enquanto que a desvulcanização contínua não apresentou resultados relevantes para o sistema adotado. O material desvulcanizado demonstrou mudanças químicas e físicas consideráveis na sua estrutura. Assim, a reciclagem de elastômeros utilizando a energia das micro-ondas torna-se possível e provoca mudanças estruturais no material para borracha com altos teores de negro de fumo utilizando o sistema batelada. / The recycling of several materials has acquired importance in the last few years. Serious environmental problems as the increase in waste material and air pollution, caused by the growing consumption of polymeric material, stimulate works to development of distinct ways of reclamations. However, the recycling of elastomers has demonstrated more complexity than other polymeric materials because, after vulcanized, the material can not be remolded by simple heating. The microwave devulcanization is a promissory technique to solve this problem, in as it makes it possible to replace the remold capacity of elastomers. In this work it was studied the devulcanization by microwave in continuous and batch processes of styrene-butadiene rubber (SBR) with different amount of carbon black (CB) and in different process conditions, to evaluate the devulcanization process and to clarify the involved phenomena and chemical. The efficiency of distinct devulcanization systems was evaluated through thermogravimetric analyses (TG), dynamic-mechanical analysis (DMA), differential scattering calorimetric (DSC), Fourier transformed infrared (FTIR), nuclear magnetic resonance (NMR), crosslink density and gel content analysis. The devulcanization was more effective in SBR elastomer with higher amount of carbon black, used the batch systems devulcanization with a single source of radiation, whereas the continuous devulcanization did not show relevant results to the adopted system. The devulcanized material exhibited considerable chemical and physical alteration in its structure. Thus, the elastomers recycling using the microwave energy is possible and generates structural modification in the material for rubber with high amount of carbon black in batch system.
|
117 |
Desenvolvimento de filmes biodegradáveis à base de proteína da torta de mamona (Ricinus communis L.) modificada com glioxal e reforçados com fibras de celulose / Development of films based on proteins extracted from castor bean (Ricinus communis L.) cake crosslinked with glyoxal and reinforced with cellulose pulp fibersTiara Gomes de Oliveira 22 February 2013 (has links)
A torta de mamona é um resíduo gerado da extração de óleo da mamona, que tem potencial para matéria prima para a produção de filmes biodegradáveis. Filmes a base de proteínas têm limitações mecânica. Assim, as propriedades físicas destes materiais biodegradáveis podem ser melhoradas com o uso de agentes químicos, como reticulantes, e de fibras vegetais, como material de reforço. Neste sentido, o objetivo geral desta dissertação foi o desenvolvimento de filmes biodegradáveis à base de proteína extraída da torta da mamona, modificada com glioxal, e reforçados com fibras da polpa de celulose, para emprego na agricultura. Os objetivos específicos foram a avaliação das fibras de celulose em relação ao ganho de umidade, microscopia e estrutura química, e a avaliação do efeito da concentração de fibras sobre as propriedades mecânicas (tração e perfuração), cor, opacidade, brilho, umidade, solubilidade, permeabilidade ao vapor de água, microestrutura, propriedades térmicas, e estrutura química através de espectroscopia de infravermelho com transformada de Fourier. As proteínas foram extraídas da torta de mamona em um reator com controle digital de temperatura (50 ºC), de pH (12, com NaOH) e de agitação (400 rpm), com capacidade para 5 Litros. As fibras de celulose foram dispersas em água com agitador de alta rotação. Os filmes foram preparados por desidratação de soluções formadoras de filmes (SFF) com 6g de proteína/100 g de SFF, 5g glioxal/100g de proteína, 30 g de glicerol/100 g de proteína e 0; 2,5; 5; 7,5; 10 e 12,5g de fibras/100 g de proteína. A adição de fibras não mostrou efeito sobre a espessura, umidade, solubilidade em água e permeabilidade ao vapor de água dos filmes. Entretanto, as propriedades mecânicas do material melhoraram em função da concentração de fibras. O acréscimo de fibra provocou aumento na força de perfuração, tensão na ruptura e módulo de elasticidade e diminuição na deformação dos filmes. A adição de fibras também exerceu efeito sobre a cor, opacidade e brilho dos compósitos. Os resultados das análises por microscopia eletrônica de varredura permitiu verificar que as fibras de celulose estavam bem dispersas na matriz do filme, explicando seu efeito sobre as propriedades mecânicas dos filmes. E, as análises por espectroscopia de infravermelho com transformada de Fourier corroboraram com esses resultados. O reforço com fibras mostrou-se eficiente e uma excelente alternativa para a produção de filmes a base de biopolímeros. / Castor bean (Ricinus communis L.) cake is a by product of the extraction process of castor oil, which has potential for biodegradable films production. Proteins-based films have mechanical limitations; however it physical properties can be improved with the use of chemical agents, as cross linker, and of vegetal fibers, as reinforcement load. Therefore, the aim of this work was the development of films based on proteins extracted from castor bean (Ricinus communis L.) cake crosslinked with glyoxal and reinforced with cellulose pulp fibers, to be used in agriculture. More specifically, the objectives of this work were the evaluation of cellulose fibers, moisture gain, microstructure and chemical structure, and the evaluation of the effect of fiber content on thickness, moisture content, mechanical properties (by tensile and puncture tests), color, opacity, gloss, solubility in water, water vapor permeability, color, opacity, gloss, microstructure by scanning electron microscopy, and chemical structure by Fourier transform infrared spectroscopy. Proteins were extracted from castor beans cake in a reactor with digital temperature control (50ºC), pH (12, with NaOH) and agitation (400 rpm) with 5L capacity. Cellulose fibers were dispersed in water using a high shear stirrer. Films were prepared by dehydration of film-forming solutions (FFS) with 6g protein/100g FFS, 5g glyoxal/100g protein, 30g glycerol/100g protein and 0; 2.5; 5; 7.5; 10 and 12.5g cellulose fibers/100g protein. Fibers content had no effect on thickness, moisture content, solubility in water and water vapor permeability of films. Nevertheless, the mechanical properties of films were improved as a function of fiber concentration. The increasing in fibers concentration increased puncture force, tensile strength and elastic modulus and decreased films deformation. The addition of fibers also had an effect on color, opacity and gloss of composites. The results of scanning electron microscopy showed that cellulose fibers were well dispersed in the film matrix, explaining their effect on mechanical properties of films. Additionally, analysis by Fourier transform infrared spectroscopy corroborated with these results. Fiber reinforcement was effective and seems to be a great alternative for the production of films based on biopolymers.
|
118 |
A Novel Biostable 3D Porous Collagen Scaffold for Implantable BiosensorJu, Young Min 07 December 2007 (has links)
Diabetes is a chronic metabolic disorder whereby the body loses its ability to maintain normal glucose levels. Despite of development of implantable glucose sensors in long periods, none of the biosensors are capable of continuously monitoring glucose levels during long-term implantation reliably. Progressive loss of sensor function occurs due in part to biofouling and to the consequences of a foreign body response such as inflammation, fibrosis, and loss of vasculature.
In order to improve the function and lifetime of implantable glucose sensors, a new 3D porous and bio-stable collagen scaffold has been developed to improve the biocompatibility of implantable glucose sensors. The novel collagen scaffold was crosslinked using nordihydroguaiaretic acid (NDGA) to enhance biostability. NDGA-treated collagen scaffolds were stable without any physical deformation in the subcutaneous tissue of rats for 4 weeks. The scaffold application does not impair the function of our sensor. The effect of the scaffolds on sensor function and biocompatibility was examined during long-term in vitro and in vivo experiments and compared with control bare sensors. The sensitivity of the short sensors was greater than the sensitivity of long sensors presumably due to less micro-motions in the sub-cutis of the rats. The NDGA-crosslinked scaffolds induced much less inflammation and retained their physical structure in contrast to the glutaraldehyde (GA)-crosslinked scaffolds.
We also have developed a new dexamethasone (Dex, anti-inflammatory drug)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres/porous collagen scaffold composite for implantable glucose sensors. The composite system showed a much slower and sustained drug release than the standard microspheres. The composite system was also shown to not significantly affect the function of the sensors. The sensitivity of the sensors with the composite system in vivo remained higher than for sensors without the composites (no scaffold, scaffold without microspheres). Histology showed that the inflammatory response to the Dex-loaded composite was much lower than for the control scaffold. The Dex-loaded composite system might be useful to reduce inflammation to glucose sensors and therefore extend their function and lifetime.
|
119 |
Radiation Induced Degradation Pathways for Poly (Methyl Methacrylate) and Polystyrene Polymers as Models for Polymer Behavior in Space EnvironmentsHeffner, Kenneth Henry 17 November 2003 (has links)
Modeling methods are required for predicting the chemical stability of macromolecular materials used in critical spacecraft components of satellites orbiting in the high-energy radiation environment of near earth and deep space planetary magnetic belts. Methods for establishing degradation mechanisms and predicting and simulating the total absorbed dose and ionization for long term space missions are presented herein. This investigation evaluates cross-linking, main-chain scission and elimination products in a linear series of narrowly dispersed poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers. A comparison is made of the scission radiation yield (Gs) and crosslinking (Gx) predicted for the simulated ionization data to the results of degradation in a ground-based simulation of the space radiation environment using a 60Co source. The influence of molecular weight on the stability of post-irradiated polymer is evident in the degree of change observed for each molecular weight series with respect to the degradation products produced by exposure to gamma radiation. The analysis of the specific polymer degradation products and changes in the average molecular weight (Mw) were performed using chemical analysis (FTIR and GPC) and thermal analysis (DSC). The analytical results for PMMA and polystyrene radiation-induced degradation products demonstrate that, depending on Mw, the amount and types of degradation products will vary with respect to crosslinking, chain scission and other oxidative pathways. The results support the preference for end group loss with free volume properties driving the observed differences in the G(s) and (Gx) values. The cross-linking observed for polystyrene is controlled by molecular weight as well wherein the lowest molecular weight molecules display greater resistance to cross-linking. This research investigation employs proven tools of analysis (NASA AP8 and AE8) that accurately predict the amount of energy applied to spacecraft materials during a typical near-earth, aggressive mission environment . Another model (SPENVIS) is applied to determine the amount of total energy absorbed by the spacecraft materials from proton, electron and Brehmsstralung radiation throughout the mission life. Another set of models (SRIM and CASINO) are used to asses the range of penetration of particles into the materials and the extent of ionization caused by the particle spectrum and fluence. The absorption coefficients for the PS and PMMA structure are determined to ensure good correlation between ground simulation and the true space environment. The total dose values are used to establish the total dose that is to be deposited during the ground simulation experiments. A 60Co irradiator was used as the ground simulation source. Dosimetry was used to determine the exposure time needed to deposit an equivalent amount of dose accumulation needed to simulate the total dose modeled for the space mission. Using gel permeation chromatography, previous studies have demonstrated that the characteristic Gaussian distribution of narrowly-dispersed PS and PMMA is perturbed by the accumulation of degradation products following irradiation. The change in distribution provides insight into the preferred path of degradation. The role of free volume in the glass transition temperature are reported with respect to Tg variation with molecular weight. Using differential scanning calorimetry. The role of free volume in the determination of the mechanism of radiation-induced degradation is a primary focus of this investigation when considering the ability of the main chain to recombine or undergo abstraction as opposed to crosslinking or scission where motion is restricted in the solid state. The subtle distinction of structural changes brought about by the loss of side groups, double bond formation and crosslinking have been characterized by infrared spectroscopy. The resultant spectra of irradiated polymers offer considerable information on verifying the extent of competing reactions that involve structural features of the molecule. These instrumental methods are the tools of research that will assess the affect of molecular structure on polymer radiation resistance, and will support the rationale explaining the preference for one degradation mechanism over another. This research investigation has yielded information on the affect of polymer molecular structure on radiation resistance. The work goes beyond previous studies that define empirical observations for a change in radiation resistance by virtue of a change in side group. The effect of free volume, stabilized intermediates and reactive intermediates are related to molecular weight and side group functionality. The understanding of the mechanistic rationale behind the effect of structural features on polymer radiation resistance are essential to the development of modeling systems for predicting polymer stability in space mission environments.
|
120 |
Effects of protein modification on textural properties and water holding capacity of heat induced turkey breast meat gelsLi, Xuesong 18 January 2008
The main objectives of this research were to examine effects of protein modification (protein cleavage and crosslinking) on turkey meat gelation and to evaluate textural properties and water holding capacity of meat gels prepared from normal and PSE (pale, soft, exudative) turkey breast meat.<p>First, the effect of protein degradation on turkey breast meat gelation was studied. To create different extent of proteolysis in the meat, á-chymotrypsin (EC 3.4.21.1) was added to normal and PSE meat batters at 0, 2.5, 5 and 10 ppm levels. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of cooked meat gels showed progressive protein hydrolysis with increasing enzyme level. Texture profile analysis and torsional analysis of the cooked meat gels showed an incremental deterioration in texture with increasing enzyme level. This inferior texture caused by proteolysis was similar to that observed in the gels made from PSE turkey meat alone. Pearson correlation coefficients indicated gel textural properties and expressible moisture were highly correlated to the degree of proteolysis, especially to that of myosin heavy chain (p < 0.001).<p>The second study focused on modifying protein size to improve meat gelation, especially PSE meat gelation. Transglutaminase (TGase, EC 2.3.2.13) was chosen due to its ability to catalyze crosslinking of proteins. Pea protein isolate, an alternative to soy protein, was also evaluated as a meat protein extender. Textural profile and torsional gelometry analyses of the cooked meat gels showed TGase alone significantly (p < 0.05) increased gel texture, especially for those made from PSE meat. However, cook yield of the meat gels was compromised possibly due to steric effects. Addition of pea protein isolate alone improved cook yield and gel texture, especially for the gels made from PSE meat. The combination of TGase and pea protein produced the strongest meat gels, while maintaining a similar cook yield to the control. SDS-PAGE showed the disappearance of several protein bands contributed from the meat or pea protein with TGase addition, indicating that these likely were crosslinked and too large to enter the gel. Dynamic rheological analysis revealed TGase altered the viscoelastic properties of the meat or meat-pea protein mixtures and produced more elastic gels on cooling.<p>This research indicated proteolysis had a dramatic impact on textural properties of turkey breast meat gels. Crosslinking of proteins catalyzed by TGase significantly improved gel texture, especially for the gels made from PSE meat. However, TGase-assisted crosslinking of proteins resulted in greater cooking losses unless an extender/adjunct such as pea protein was added.
|
Page generated in 0.0873 seconds