• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 6
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 79
  • 79
  • 25
  • 21
  • 20
  • 17
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

3D RECONSTRUCTION OF RyR1 AND STRUCTURAL VALIDATION UNDER DIFFERENT LEVELS OF NOISE

Lobo, Joshua J 01 January 2014 (has links)
Ryanodine receptors (RyR) are intracellular channels that are intricately involved in Ca2+ release. These channels large membrane proteins~2.26MDa in size. In this multi-goal project firstly we successfully studied the gating mechanics of the RyR1 in the presence of Mg2+. We used single particle reconstruction and image processing techniques to obtain the 3D structure of the RyR1 with Mg2+. The 3D structure in the presence of Mg2+ and an ATP analog is the closest representation of human physiological conditions. The open and closed state structures of RyR1 are known. However, the physiologically closed state has not been studied before. Understanding this structure will help in the understanding of protein interactions. Our second goal was the validation of this 3D structure under different levels of noise. Validation under different noise levels analyzed the problem of noise bias is present in the field of cryo-EM and single particle reconstruction in select cases.
12

Structural studies of the multi-drug resistance protein P-glycoprotein (ABCB1)

Thonghin, Nopnithi January 2018 (has links)
P-glycoprotein (P-gp or ABCB1) is a membrane-bound active transporter belonging to the ABC protein superfamily. It is responsible for xenobioIc efflux and also contributes to multidrug resistance in diverse diseases including cancer and epilepsy. P-gp has been increasingly recognised as a potential target for future therapeutics. Although the protein has been studied for decades, understanding of the P-gp transport mechanism is still incomplete. Two P-gp orthologues, mouse (m) and human (h), were therefore expressed in yeasts and purified in the presence of the detergent, n-Dodecyl-β-D- Maltoside (DDM). Purified proteins were examined for aggregation and monodispersity via dynamic light scattering (DLS) and their thermal stability was determined by an assay using a thiol-specific dye (CPM). ATPase activity, measured in a detergent environment, showed that the proteins were active with a basal activity of 60 ± 4 and 35 ± 3 nmol/min/mg for mP-gp and hP-gp, respectively. Crystallisation trials were conducted in the presence of nucleotide. In meso crystallisation using commercial monoolein pre- dispensed plates yielded hexagonal crystal-like objects however they failed to diffract X- rays. P-gp samples were also subjected to cryo-EM where mP-gp in the post-hydrolytic (ADP-bound, vanadate-trapped) state provided the highest resolution dataset that led to a reconstruction of 3D density map at the resolution of 7.9 Å which showed an inward- facing conformation. Rigid-body model fitting unveiled densities that were not accounted for by the fitted model illustrating new features such as bound ADP, extended NBD1- TMD2 linker and alternative allocrite-binding sites. Ultimately, the knowledge of P-gp conformation alteration was enhanced and a refined alternating access mechanism of P- gp was proposed based upon information derived from this study.
13

A molecule-inhibitor of the integrated stress response regulates activity of mammalian eukaryotic translation initiation factor 2B

Zyryanova, Alisa January 2018 (has links)
The Integrated Stress Response (ISR) is a conserved eukaryotic translational and transcriptional program implicated in mammalian metabolism, memory and immunity. Although mainly considered to be a protective mechanism, prolonged and severe ISR can result in cell death. The ISR is activated by diverse stress pathways converged on phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2) that inhibits the guanine nucleotide exchange activity of its partner eIF2B and attenuates overall rates of protein synthesis. Numerous mutations in eIF2B are linked to a fatal neurodegenerative disease of vanishing white matter. A new chemical inhibitor of the ISR (ISRIB), a bis-O-arylglycolamide, can reverse the attenuation of mRNA translation by phosphorylated eIF2 protecting mice from prion-induced neurodegeneration and traumatic brain injury. The work presented in this dissertation describes identification of mammalian eIF2B as a cellular target of ISRIB by implementing biochemical, biophysical, structural and chemogenetic methods. The herein reported cryo-electron microscopy-based structure of eIF2B uncovers a novel allosteric site on the translation factor capturing the ISRIB-binding pocket at the interface between its β and δ regulatory subunits. The extensive CRISPR/ Cas9-based screen for ISRIB-resistant and analogue-sensitive phenotypes revealed residues on the eIF2B dimer interface important for ISRIB binding. Based on the results reported in this dissertation along with the similar findings of others the potential molecular basis of ISRIB action, and its implication for the regulation of eIF2B's activity is broadly discussed. The identification of the ISRIB binding pocket away from the known interaction sites between eIF2B and eIF2 is also put into the context of a possible molecular mechanism of eIF2B's guanine exchange inhibition by phosphorylated eIF2. The work described in this dissertation provides new insight into the translational regulation and points to the importance of fine-tuning the activity of translation factors by small chemical molecules.
14

Role of Molecular Chaperonin CCT and Its Co-Chaperone PhLP1 in the Assembly of mTOR Complexes

Dhavale, Madhura Vinayak 01 August 2017 (has links)
mTOR is the central kinase in biochemical pathways that regulate cellular growth, protein synthesis and cell survival. Deregulation of mTOR signaling results in uncontrolled cell proliferation and hence is implicated in various cancers and autoimmune diseases. mTOR functions through two distinct signaling complexes, called mTORC1 and mTORC2. CCT is a cytosolic chaperonin that assists in folding of several protein substrates. In these studies, we have identified two components of the mTOR complexes, mLST8 and Raptor, as substrates of CCT. We have performed biochemical and signaling studies which indicate that CCT is involved in assembly and signaling of mTOR complexes by folding β-propeller domains of mLST8 and Raptor. We have also obtained high resolution structural information of the mLST8-CCT complex by cryo-EM and mass spectrometric cross-linking. Moreover, we have explored the role of PhLP1 as a co-chaperone for CCT in the assembly of mTOR complexes. Interestingly, we found that PhLP1 plays very different roles in the case of mLST8 and Raptor. While PhLP1 participate in assembly of mLST8 into mTOR complexes, it facilitates degradation of Raptor. These biochemical data, combined with structural information, can be used to design small molecules that modulate mTOR signaling by affecting the formation of intact mTOR complexes.
15

Expanding the Role of Electron Cryomicroscopy in Structural Analysis of Asymmetrical Protein Complexes

Keating, Shawn 18 March 2013 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a rapidly developing structural biology technique for the study of macromolecular protein complexes. Presently, cryo-EM fills an important niche by facilitating acquisition of 3-D structures of protein complexes not amenable to structure determination by other techniques. Expansion of cryo-EM beyond this niche requires continued improvement in the types of specimens that can be studied as well as the final resolutions achieved. Two studies were undertaken to address these issues. The first examined resolution limitations by quantifying the effect of beam-induced motion in images of beam-sensitive paraffin crystals. The second explored the possibility of using cryo-EM to study the interaction of small effector proteins with a large multi-protein complex, V-ATPase. The results of these studies exposed the fact that fundamental aspects of the imaging and specimen preparation processes remain poorly understood and must be addressed to facilitate future improvements in cryo-EM structure determination.
16

Expanding the Role of Electron Cryomicroscopy in Structural Analysis of Asymmetrical Protein Complexes

Keating, Shawn 18 March 2013 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a rapidly developing structural biology technique for the study of macromolecular protein complexes. Presently, cryo-EM fills an important niche by facilitating acquisition of 3-D structures of protein complexes not amenable to structure determination by other techniques. Expansion of cryo-EM beyond this niche requires continued improvement in the types of specimens that can be studied as well as the final resolutions achieved. Two studies were undertaken to address these issues. The first examined resolution limitations by quantifying the effect of beam-induced motion in images of beam-sensitive paraffin crystals. The second explored the possibility of using cryo-EM to study the interaction of small effector proteins with a large multi-protein complex, V-ATPase. The results of these studies exposed the fact that fundamental aspects of the imaging and specimen preparation processes remain poorly understood and must be addressed to facilitate future improvements in cryo-EM structure determination.
17

Structural studies of the mitochondrial F-ATPase

Spikes, Tobias Edward January 2018 (has links)
The mitochondrial F-ATPases make about 90% of cellular ATP. They are multi-protein assemblies with a membrane extrinsic catalytic domain attached to a membrane embedded sector. They operate by a mechanical rotary mechanism powered by an electro-chemical gradient, generated across the inner mitochondrial membrane by respiration. A detailed molecular description has been provided by X-ray crystallographic studies and "single molecule" observations of the mechanism of the F1 catalytic domain. Details are known also of the architecture of the peripheral stalk of part of the stator and the membrane embedded region of the rotor. However, knowledge of the detailed structure of the rest of the membrane domain, and the detailed mechanism of generation of rotation is lacking. Recently, studies of the intact mitochondrial F-ATPases, determined by cryo-electron microscopy (cryo-em), have provided structural information at intermediate levels of resolution. Whilst these structures have given insights into the mechanism of generation of rotation, the information required for a molecular understanding of this mechanism is still lacking. Moreover, the locations and roles of six supernumerary membrane subunits are unclear. Some of them are likely to be involved in the formation of dimers of the enzyme which line the edges of mitochondrial cristae. Therefore, in this thesis, a procedure is described for the purification of dimers of the bovine and yeast F-ATPases. The structure of the bovine dimer has been determined by cryo-em at a resolution of ca. 6.9 Angstrom. This structure confirms features concerning the trans-membrane spans of the a-, A6L- and b-subunits observed in the monomeric complex. In addition, the single trans-membrane a-helix of the f-subunit has been located, and the subunit appears to mediate dimer formation. The structure of A6L has been extended, and the a-helices of subunits e- and g- have been located. Another novel feature has been assigned to the DAPIT subunit, and may provide links between dimers in forming larger oligomers. Further improvement in the resolution of the structure is hampered by the extreme conformational heterogeneity of the F-ATPase. To this end, the simpler Fo membrane domain has been isolated and characterized initially by electron microscopy in negative stain.
18

Investigation of the 3D structure of the human activated spliceosome by cryo-electron microscopy

Komarov, Ilya 15 September 2017 (has links)
No description available.
19

STRUCTURAL STUDIES OF THE PHAGE G CAPSID AND HELICAL TAIL SHEATH USING CRYO-EM

Brenda Gonzalez (11267193) 12 August 2021 (has links)
<div> <div> <div> <p>Phages, viruses that infect bacteria, have been used for many studies in understanding fundamentals of molecular biology and taking advantage of their natural antimicrobial properties (Harper 2021). They are often noted for their overwhelming abundance and are recognized as the most abundant biological entities in the world (Harper 2021). The field has grown since the early 20th century, and now, there are several classes of phages that have been observed and characterized (Ackermann 2009). Within this abundant class of biological organisms, the order called Caudovirales, is the most populated group of phages to date (Harper 2021). In this order of viruses, the dsDNA genome phages have 2 main components, the icosahedral capsid, and a tail (Harper 2021). Though many tailed phages have been studied for many decades, new information about phages is still being found. Important findings such as the CRISPR gene editing tool adapted from phages in 2007 (Barrangou, Fremaux et al. 2007) have contributed to new biotechnology that impacts human health. For this reason, studies on phages have proven to be valuable in understanding fundamental biological questions and advancing basic research. </p><p><br></p> <p>In this dissertation, we investigated phage G, which has the largest capsid and genome of propagated phage studied to date (Donelli 1968, Sun and Serwer 1997, Pope 2011, Hua, Huet et al. 2017). By studying phage G, we may add to the knowledge of this relatively unexplored group of Jumbo phages with remarkably larger genomes (>200kbp) (Yuan and Gao 2017)to understand how their structure and function may be similar or different to the commonly studied, smaller bacteriophages, such as T4 and λ. For a majority of these studies, we outline how our structural biology insights of phage G using cryo-EM (cryo-Electron Microscopy) have shown it’s icosahedral capsid of ~ 180 nm in diameter at the 5-fold icosahedral vertex is composed of hexamer and pentamer proteins similar to what’s been discovered in other, smaller tailed phages (González, Monroe et al. 2020). Our observations from microscopy data also show unique mechanistic properties in phage G’s tail that are inconsistent with current model of tail contraction within the Myoviridae family of tailed phages. Data suggest phage G’s structure and organization of its helical tail are still similar to contractile phages such as T4 (Amos and Klug 1975, Abuladze, Gingery et al. 1994) and phi812 (Nováček, Šiborová et al. 2016), however, the mechanism of the tail sheath movement is inconsistent with the existing ideas of myophage function (Harper 2021).</p></div></div></div>
20

CRYO-ELECTRON MICROSCOPY SINGLE PARTICLE STUDIES OF HUMAN CANCER TARGETS: UBIQUITIN-SPECIFIC PROTEASE 7 (USP7), USP28, AND KEAP1-CULLIN3-RBX1 E3 LIGASE MACHINERY

Corey A Moore (9220163) 07 August 2020 (has links)
<p>The following work describes the methodology and materials used to study three human protein complexes involved in the etiology and progression of cancer. The first, ubiquitin-specific protease 7 (USP7) is an isopeptidase that employs a unique auto-regulatory mechanism. The second is another ubiquitin-specific protease, USP28, which forms higher order states in solution. Lastly, the third case was a protein complex that utilizes an oxidation-sensitive dimeric protein, Keap1, and two components of an E3 ligase – Cul3-Rbx1. Each of these studies involved overcoming unique challenges for cryo-EM sample optimization. Not all yielded the quality of data that would result in high-resolution (< 6 Å) densities. Despite this, new information was discovered about each system.</p> <p>USP7 has a unique mechanism of intramolecular regulation that stems from a hypothesized tethered-rheostat, whereby the c-terminal distal domains activate the catalytic domain via a hypothetical wide degree of conformational movement. My cryo-EM work, done in collaboration with the Wen Jiang lab, is the first comprehensive structural data that provides structural evidence for the movement of the tethered-rheostat. The particle set showed a great degree of conformational heterogeneity, even after a strategy was employed with a chemically-modified ubiquitin substrate to ameliorate these issues. The data showed that during the ubiquitin-bound state, after the release of a hypothetical substrate, but prior to the release of mono-ubiquitin, the HUBL4-5 domains do not remain engaged with the catalytic domain. This information suggests a change to existing models of catalysis. </p> <p>Additionally, the structural model built from the cryo-EM density has revealed an interfacial region between domains that were previously not thought to interact. This interfacial region between the TRAF domain and HUBL1-3 represents a candidate location of binding for a mixed, non-competitive inhibitor of USP7 previously identified in the lab. Enzyme kinetics, DSF, and Glide molecular docking experiments all yielded data that corroborate this idea.</p> <p>Structural studies on USP28 have been difficult as the multi-domain enzyme adopts oligomers in solution and is generally not amenable to crystallographic analysis. Prior to the work described herein, the only structural data were a solution NMR structure describing a few alpha-helical motifs in the N-terminus. During my graduate studies, two articles were published of the USP28 catalytic domain crystallographic structure. Both corroborated the existence of a dimer. The USP28 catalytic domain migrates during analytical gel filtration assays with the apparent molecular weight of a tetramer. Furthermore, glutaraldehyde crosslinking experiments show the catalytic domain appears to adopt a tetrameric state, like the USP25 tetramer. The USP25 tetramer was published alongside the USP28 catalytic domain dimer, concluding that a USP28 tetrameric state was not observed. Upon cryo-EM data collection and single particle analysis, it was observed that the compositional heterogeneity of the dataset was too great for any meaningful reconstruction. Although, the dataset appeared to how the presence of the <i>E. coli</i> GroEL chaperone complex. Co-expression experiments confirmed that the GroEL chaperone complex migrates with USP28 throughout the purification and may be useful for purifying USPs for structural studies.</p> <p>Currently, our lab has a single-angle X-ray scattering (SAXS) model of the Keap1-Cul3 E3 ligase complex. But, the field does not fully agree on the molecular stoichiometry or the overall structure-function of this oxidation sensor – E3 ligase complex. It is hypothesized that Keap1 forms a dimer through its BTB domain, and a single Cul3 molecule then binds this dimer. The oxidation state of Keap1 cysteines appears to be critical to the interaction, but the field remains uncertain about which residues are responsible for the interaction with the Cul3-Rbx1 E3 ligase. To better understand this interaction and to obtain structural information to corroborate the SAXS model, recombinant Keap1 and Cul3-Rbx1 were purified and their interaction was tested by ITC, gel filtration assay, and a new technique called <i>mass photometry</i>. </p> <p>It was found that the Keap1 Cys151 residue is not the oxidation sensor critical to the interaction, contrary to what some in the field anticipated. Additionally, it was found that under oxidative conditions, WTKeap1 could not form a complex with Cul3-Rbx1. The complex was successfully purified and was measured by SDS-PAGE, gel filtration assay, and mass photometry, and then used for cryo-EM single particle analysis. Full data collection and analysis has not yet been completed. It is anticipated that like the data from mass photometry, analytical SEC, and cryo-EM single particle analysis will show the complex appears to show a 1:1 Keap1-Cul3 stoichiometry, as opposed to the anticipated 2:1 ratio.</p>

Page generated in 0.0323 seconds