101 |
Interactions Involving Organics Fluorine In Crystal Engineering : Insights From Crystal Packing And PolymorphismChaudhuri, Ansuman Ray 09 1900 (has links) (PDF)
No description available.
|
102 |
De l'amorphe au cristal : etude d'un composé pharmaceutique chiral / Glass-to-crystal transition in a chiral pharmaceutical systemViel, Quentin 16 June 2017 (has links)
Au cours des dernières années, le domaine de la cristallisation a pris de l'importance. Avec l'amélioration de techniques analytiques, la compréhension et la prédiction de structures cristallines deviennent plus précises. Ce travail porte sur l’un des cas limites répertoriés, qui défient la compréhension de la cristallographie, du polymorphisme, des théories de transition de phases et des mécanismes de discrimination chirale. La diprophylline est une molécule chirale d’intérêt pharmaceutique, et rentre dans cette catégorie de cas limites, au moins en ce qui concerne le comportement à la cristallisation. Les compositions énantiomérique et racémique de ce système à l'état amorphe ont été traitées, afin de soigneusement étudier les transitions cinétiques en lien avec la mobilité moléculaire globale. Un protocole robuste a été élaboré afin d’étudier la mobilité moléculaire par spectroscopie diélectrique, en couvrant une gamme de température de 200 °C. L’étude comparative des échantillons purifiés a démontré que le comportement dynamique d’un seul énantiomère et du mélange racémique était très similaire. Une autre relaxation secondaire γ a été trouvée pour les échantillons contenant de la théophylline, l’impureté majeure détectée par chromatographie. De plus, cette étude démontre que la cristallisation depuis l’état vitreux se déroule en plusieurs étapes complexes. Il s’agit d’abord de la nucléation homogène et croissance d’une première population de cristaux, dont les caractéristiques sont détaillées, et qui agit comme support pour le développement de populations secondaires constituées de solutions solides métastables ayant des cinétiques de croissance plus élevées. Ces études démontrent également que la présence d’interfaces favorise la nucléation hétérogène de formes plus stables, et ce à différents taux énantiomériques. / During the last few decades, the field of crystal engineering has gained prominence. Along with the improvement of analytical techniques, the understanding and prediction of crystal structures become more and more accurate. The present work is dedicated to one of the borderline cases encountered that challenge the general understanding of crystallography, polymorphism, phase transition theories and chiral discrimination mechanisms. The chiral pharmaceutical drug diprophylline is one of them, at least for crystallization aspects. Both racemic and enantiopure compositions of this system at the amorphous state have been considered, to carefully study the kinetic transitions with respect to the global molecular mobility. A robust protocol has been established to investigate the molecular mobility by broadband dielectric spectroscopy covering a temperature range of more than 200 °C. The comparative dielectric study of the purified samples proved that the dynamic behaviors of a single enantiomer and of the racemic mixture are very similar; but another secondary relaxation γ was found in samples containing theophylline, the main impurity identified by chromatographic measurements. Additionally, the present study demonstrated that the crystallization from the supercooled melt occurs as a complex multistep process. It involves the homogeneous nucleation and growth of a first population, whose characteristics are highlighted, and which acts as support for the development of secondary populations constituted of metastable solid solutions with higher growth rates. Moreover, the conducted studies demonstrated that at various enantiomeric compositions, the presence of interfaces favored the heterogeneous nucleation of a more stable form.
|
103 |
Construction ascendante d’assemblages moléculaires cristallins dérivés du motif 1,2,4,5-benzènetétramineSosoe, Johann 08 1900 (has links)
Le XXIe siècle est une ère de progrès technologique sans précédent : jamais auparavant il ne nous n’a été possible de se déplacer et de communiquer aussi vite et loin. La démocratisation des transports et des appareils de communication modernes réduit cependant la disponibilité de ressources naturelles causant des problématiques socio-économiques et sanitaires globales comme la pollution ou des conflits politiques. Le contenu de cette thèse tente proposer des façons dont la conception rationnelle de matériaux organiques aux propriétés programmées pourrait améliorer la durabilité et les performances des cathodes de batteries Li-ion. Dans un premier temps, des stratégies permettant la construction contrôlée et ascendante d’assemblages cristallins organiques (essentiellement faits de carbone, hydrogène, oxygène et azote) seront présentées. Ensuite, différentes manières dont ces stratégies de constructions sont mises à contribution du développement de batteries Li-ion plus vertes seront exposées. Finalement, un projet de recherche reposant sur une expertise en chimie organique et en ingénierie cristalline pour la génération de matériaux aux propriétés pertinentes à de telles applications sera détaillé. / The 21st century marks an unprecedented era of technological advancement. Never before have we been able to travel and communicate as swiftly and extensively as we can now. While the accessibility of modern transportation and communication devices democratizes these capabilities, it also diminishes the availability of natural resources, giving rise to global socio-economic and health-related challenges such as pollution and political conflicts. The objective of this thesis is to propose methods by which the rational design of organic materials with programmed properties could improve both durability and sustainability of Li-ion batteries. Initially, the thesis outlines strategies for the controlled and bottom-up construction of organic crystalline assemblies primarily composed of carbon, hydrogen, oxygen, and nitrogen. Subsequently, various ways in which these construction strategies contribute to the development of more environmentally friendly Li-ion batteries are discussed. Finally, a research project is presented, centered around expertise in organic chemistry and crystal engineering for generating materials with properties relevant to such applications.
|
104 |
Novel Technology for Crystal Engineering of Pharmaceutical SolidsJadav, Niten B. January 2018 (has links)
The research work described in this thesis, the environmentally
friendly novel "Microwave Assisted Sub-Critical water (MASCW)" technology
for particle engineering of active pharmaceutical ingredients and excipients
was developed. The present novel technology MASCW process is described
as green technology as water is used as the solvent medium and microwave
energy as external source of heat energy for generation of a particle with
different morphological and chemical properties.
In MASCW process supersaturated solution of APIs is prepared by
dissolving solute in water at high temperature and pressure conditions. Upon
rapid and controlled cooling, based on the aqueous solubility of solute,
solute/solvent concentration and dielectric constant of water rapid
precipitation of API with narrow particle size distribution occurs.
Using paracetamol (pca) as API moiety understanding of the
mechanism of MASCW crystallisation process was investigated. The effect
of different process and experimental parameters on crystallisation pathway
and end product attributes were analysed. Correlation between the degree of
supersaturation concentration of pca solution against temperature and
pressure parameters was explained by generating binary phase diagram.
Determination of polymorphic transformation pathway of pca from form I
(stable) to form II metastable polymorphs in solution was analysed using Raman spectroscopy. The difference between conventional heating and
subcritical treatment was explored by determining the change in the solvent
dielectric constant and solubility of hydrophobic API molecule.
Based on the process understanding results, this technology was
further implemented to explore its application in generating phase pure
stable and metastable cocrystal phase. Based on the solubility of API and
cocrystal former congruent (CBZ/SAC, SMT/SAC, SMZ/SAC) and
incongruent (CAF/4HBA) cocrystal pairs were selected. For the first time
generation of anhydrous phase of CAF: 4HBA cocrystal in 1:1 stoichiometric
ration was reported and generation of metastable cocrystal phase of CA
CBZ: SAC form II was reported.
The application of this technology was explored in generating phase
pure metastable polymorph of paracetamol which retain higher
compressibility and dissolution rate. The potential of MASCW micronisation
process, theophylline is used as the model component to produce micro sized particles for pulmonary drug delivery system via dry powder inhaler
(Foradil inhaler). The results demonstrate that the THF particles generated
using MASCW process displayed greater aerodynamic performance
compared to conventional spray-dried THF sample.
In the final chapter, synthesis of inorganic biomaterial (nano crystalline hydroxyapatite) was reported for the first time and the prospects of
combining API like ibuprofen (IBU) with a biologically active component like
nano-crystalline hydroxyapatite (HA) through hydrogen bonding was
mechanistically explained using X-ray diffractometer and spectroscopic
techniques.
|
105 |
Formation of a hybrid coordination-molecular complex.Seaton, Colin C., Scowen, Ian J., Blagden, Nicholas January 2009 (has links)
No / The synthesis and crystal structure of the lithium hydrate salt of the
charge transfer complex between 3,5-dinitrobenzoic acid and
4-(dimethylamino) benzoic acid is reported. It is the first crystal
structure reported for such a class of hybrid inorganic/organic
material. The design principles may have utility in the future creation
of new ternary and higher complexes.
|
106 |
Characterization and Biocompatibility Study of Nematic and Cholesteryl Liquid Crystals.Soon, Chin Fhong, Youseffi, Mansour, Blagden, Nicholas, Berends, Rebecca F., Batista Lobo, Samira, Javid, Farideh A., Denyer, Morgan C.T. January 2009 (has links)
No / Intensive research in bio-engineering has been conducted in the search for flexible biomaterials that could support cell growth and cells attachment. Flexible synthetic materials that support cell growth without the aid of synthetic extracellular matrix proteins are still rare. Cholesteryl liquid crystal containing cholesteryl moieties may have suitable biological affinity. Human keratinocytes (HaCat) were cultured with a nematic liquid crystal and three cholesteryl liquid crystals of different formulation. Subsequently, the trypan blue dye exclusion assay was used to determine cell viability in the liquid crystals. The two classes of liquid crystal were characterized by Differential Scanning Calorimeter (DSC) and polarizing microscope (POM) to understand the nature of the interface material. The cell viability study in medium containing liquid crystals verified that liquid crystals had no effects on cell viability. However, only the surface of cholesteryl liquid crystal has shown affinity to HaCat cells. In addition, cells continued to proliferate in the presence of liquid crystals without a change of medium for eight days. No sign of exothermic and endothermic activities at 370C were observed from the DSC test results for the three samples. Biological and mechanical test result of the cholesteryl liquid crystals has shown that cholesteryl liquid crystals are non toxic and support cell attachment without extracellular matrix protein at very low elasticity.
|
107 |
Directing the assembly of multicomponent organic crystals : synthesis, characterisation and structural analysis of multicomponent organic systems formed from dynamic processesAlomar, Taghrid Saad January 2014 (has links)
Directed assembly of molecular solids continues to attract widespread interest with its fundamental application in a wide range of commercial settings where control of the crystalline state of materials corresponds with product performance. These arenas include pharmaceuticals, personal care formulations, foods, paints and pigments and explosives. In recent times, the assembly of multicomponent organic systems has achieved considerable impetus with the widespread interest in co-crystal systems. However, cogent assembly (or engineering) of multicomponent materials is still in its infancy. Considerable advances in crystal design have been made through consideration of intermolecular ‘synthons’ – identifiable motifs utilising hydrogen bonds – but the translation of other molecular information (conformation, chirality, etc.) into solid state properties (e.g. long-range (translational) symmetry, crystal chirality) remains poorly understood. In this study, we have attempted to evaluate the influence of a chiral centre adjacent to molecular synthons to identify potential translation of information into the solid form. We have compared the co-crystallisation of nicotinamide with both the racemic mixture of malic acid against that with an enantiomerically pure form of the acid (L-malic acid). As well as DL-phenyllactic acid and L-phenyllactic acid. iii It is apparent that recognition between enantiomeric molecular forms play a significant role in the assembly of these systems. This mechanism can be considered independently from the H-bonding networks supporting the hetero-molecular interactions (e.g. acid-amide recognition). Discrimination and control of such interactions may play a role in transmitting chiral molecular information into solid state multi-component assemblies. In order to develop an understanding of co-crystal formation in chiral and achiral forms with intermolecular interactions, the CSD and crystal structures were obtained to do the analysis of how co-crystals pack. This study has also investigated the use of boronic acids. The aim of this study was to investigate the modification of the hydrogen bonding environment within the hydrogen bonded multi-component systems of boroxines. The study also attempted to determine how the starting materials drive the systems between the boronic acid co-crystal and the boroxine adduct.
|
108 |
Directing the Assembly of Multicomponent Organic Crystals. Synthesis, characterisation and structural analysis of multicomponent organic systems formed from dynamic processes.Alomar, Taghrid S. January 2014 (has links)
Directed assembly of molecular solids continues to attract widespread interest with its fundamental application in a wide range of commercial settings where control of the crystalline state of materials corresponds with product performance. These arenas include pharmaceuticals, personal care formulations, foods, paints and pigments and explosives.
In recent times, the assembly of multicomponent organic systems has achieved considerable impetus with the widespread interest in co-crystal systems. However, cogent assembly (or engineering) of multicomponent materials is still in its infancy. Considerable advances in crystal design have been made through consideration of intermolecular ‘synthons’ – identifiable motifs utilising hydrogen bonds – but the translation of other molecular information (conformation, chirality, etc.) into solid state properties (e.g. long-range (translational) symmetry, crystal chirality) remains poorly understood.
In this study, we have attempted to evaluate the influence of a chiral centre adjacent to molecular synthons to identify potential translation of information into the solid form. We have compared the co-crystallisation of nicotinamide with both the racemic mixture of malic acid against that with an enantiomerically pure form of the acid (L-malic acid). As well as DL-phenyllactic acid and L-phenyllactic acid.
iii
It is apparent that recognition between enantiomeric molecular forms play a significant role in the assembly of these systems. This mechanism can be considered independently from the H-bonding networks supporting the hetero-molecular interactions (e.g. acid-amide recognition). Discrimination and control of such interactions may play a role in transmitting chiral molecular information into solid state multi-component assemblies. In order to develop an understanding of co-crystal formation in chiral and achiral forms with intermolecular interactions, the CSD and crystal structures were obtained to do the analysis of how co-crystals pack.
This study has also investigated the use of boronic acids. The aim of this study was to investigate the modification of the hydrogen bonding environment within the hydrogen bonded multi-component systems of boroxines. The study also attempted to determine how the starting materials drive the systems between the boronic acid co-crystal and the boroxine adduct.
|
109 |
Molecular Networks Created by Charge-Assisted Hydrogen Bonds Between Bis(aminidinium) Cations and Carboxylates, Sulfonates, Phosphonates and PhosphatesLie Chin Cheong, Sharon 06 1900 (has links)
L'objectif de cette étude est d'apprendre à créer de nouveaux matériaux moléculaires par design. À l'heure actuelle, il n'existe aucune méthode générale pour la prédiction des structures et des propriétés, mais des progrès importants ont été accomplis, en particulier dans la fabrication de matériaux moléculaires ordonnés tels que des cristaux. En ces matériaux, l'organisation peut être contrôlée efficacement par la stratégie de la tectonique moléculaire. Cette approche utilise des molécules appelées “tectons”, qui peuvent s’associer de manière dirigée par des interactions non covalentes prévisibles. De cette façon, la position de chaque molécule par rapport à ses voisins peut être programmée avec un degré élevé de fiabilité pour créer des cristaux et d'autres matériaux organisés avec des caractéristiques et des propriétés structurelles souhaitables. Le travail que nous allons décrire est axé sur l'utilisation de l'association des cations bis(aminidinium) avec des carboxylates, sulfonates, phosphonates et phosphates, afin de créer des réseaux moléculaires prévisibles. Ces réseaux promettent d'être particulièrement robuste, car ils sont maintenus ensemble par de multiples liaisons hydrogène assistées par des interactions électrostatiques. / The goal of this study is to learn how to create new molecular materials by design. At present, there is no general method for predicting structures and properties, but significant progress is being made, particularly in making ordered molecular materials such as crystals. In such materials, organization can be controlled effectively by the strategy of molecular tectonics. This approach uses molecules called “tectons”, which can associate in ways directed by predictable non-covalent interactions. In this way, the position of each molecule relative to its neighbors can be programmed with a high degree of reliability to create crystals and other ordered materials with desirable structural features and properties. The work that we will describe focuses on using the association of bis(aminidinium) cations with carboxylates, sulfonates, and phosphates to create predictable molecular networks. Such networks promise to be unusually robust because they are held together by multiple charge-assisted hydrogen bonds.
|
110 |
Molecular Networks Created by Charge-Assisted Hydrogen Bonds Between Bis(aminidinium) Cations and Carboxylates, Sulfonates, Phosphonates and PhosphatesLie Chin Cheong, Sharon 06 1900 (has links)
L'objectif de cette étude est d'apprendre à créer de nouveaux matériaux moléculaires par design. À l'heure actuelle, il n'existe aucune méthode générale pour la prédiction des structures et des propriétés, mais des progrès importants ont été accomplis, en particulier dans la fabrication de matériaux moléculaires ordonnés tels que des cristaux. En ces matériaux, l'organisation peut être contrôlée efficacement par la stratégie de la tectonique moléculaire. Cette approche utilise des molécules appelées “tectons”, qui peuvent s’associer de manière dirigée par des interactions non covalentes prévisibles. De cette façon, la position de chaque molécule par rapport à ses voisins peut être programmée avec un degré élevé de fiabilité pour créer des cristaux et d'autres matériaux organisés avec des caractéristiques et des propriétés structurelles souhaitables. Le travail que nous allons décrire est axé sur l'utilisation de l'association des cations bis(aminidinium) avec des carboxylates, sulfonates, phosphonates et phosphates, afin de créer des réseaux moléculaires prévisibles. Ces réseaux promettent d'être particulièrement robuste, car ils sont maintenus ensemble par de multiples liaisons hydrogène assistées par des interactions électrostatiques. / The goal of this study is to learn how to create new molecular materials by design. At present, there is no general method for predicting structures and properties, but significant progress is being made, particularly in making ordered molecular materials such as crystals. In such materials, organization can be controlled effectively by the strategy of molecular tectonics. This approach uses molecules called “tectons”, which can associate in ways directed by predictable non-covalent interactions. In this way, the position of each molecule relative to its neighbors can be programmed with a high degree of reliability to create crystals and other ordered materials with desirable structural features and properties. The work that we will describe focuses on using the association of bis(aminidinium) cations with carboxylates, sulfonates, and phosphates to create predictable molecular networks. Such networks promise to be unusually robust because they are held together by multiple charge-assisted hydrogen bonds.
|
Page generated in 0.118 seconds