• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 33
  • 17
  • 12
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Side chain liquid crystalline polymers based on oligooxyethylenic and semifluorinated flexible spacers

Tomazos, Dimitris Nikolaos January 1994 (has links)
No description available.
62

Molecular engineering of side chain liquid crystalline polymers exhibiting a chiral smectic C phase

Zheng, Qiang January 1994 (has links)
No description available.
63

A new class of polyelectrolytes, poly(phenylene sulfonic acids) and its copolymers as proton exchange membranes for PEMFC’s

Granados-Focil, Sergio January 2006 (has links)
No description available.
64

Chain Dynamics in the Crystalline Region of Polyethylene Oxide (PEO) as Investigated by Solid-State NMR

Shi, Jingjun 04 June 2015 (has links)
No description available.
65

Process/Structure/Property Relationships of Semi-Crystalline Polymers in Material Extrusion Additive Manufacturing

Lin, Yifeng 14 March 2024 (has links)
Material Extrusion additive manufacturing (MEX) represents the most widely implemented form of additive manufacturing due to its high performance-cost ratio and robustness. Being an extrusion process in its essence, this process enables the free form fabrication of a wide range of thermoplastic materials. However, in most typical MEX processes, only amorphous polymers are being used as feedstock material owing to their smaller dimensional shrinkage during cooling and well-stablished process/structure/property (P/S/P) relationship. Semi-crystalline polymers, with their crystalline nature, possess unique properties such as enhanced mechanical properties and improved chemical resistance. However, due to the inherent processing challenges in MEX of semi-crystalline polymers, the P/S/P relationships are much less established, thus limits the application of semi-crystalline polymers in MEX. The overall aim of this thesis is to advance the understanding of P/S/P relationship of semi-crystalline polymers in MEX. This is accomplished through both experimental and simulation-based research. With a typical commodity semi-crystalline polymer, Poly (ethylene terephthalate) (PET), selected as the benchmark material. First, we experimentally explored the MEX printing of both neat and glass fiber (GF) reinforced recycled PET (rPET). Excellent MEX printability were shown for both neat and composite materials, with GF reinforced parts showing a significant improved mechanical property. Notably, a gradient of crystallinity induced by a different toolpathing time was highlighted. In the second project, to further investigate the impact of MEX parameter on crystallinity and mechanical properties, a series of benchmark parts were printed with neat PET and analyzed. The effect of part design and MEX parameter on thermal history during printing was revealed though a comparative analysis of IR thermography. Subsequent Raman spectroscopy and mechanical test indicated that crystallinity developed during the MEX process can adversely affects the interlayer adhesion. In the third project, a 3D heat transfer model was developed to simulate and understand the thermal history of MEX feedstock material during printing, this model is then thoroughly validated against the experimental IR thermography data. While good prediction accuracy was shown for some scenarios, the research identified and discussed several unreported challenges that significantly affect the model's prediction performance in certain conditions. In the fourth project, we employed a non-isothermal crystallization model to directly predict the development of crystallinity based on given temperature profiles, whether monitored experimentally or predicted by the heat transfer model. The research documented notable discrepancies between the model's predictions and actual crystallinity measurements, and the potential source of the error was addressed. In summary, this thesis explored the MEX printing of semi-crystalline polymer and its fiber reinforced composite. The influence of MEX parameters and part designs on the printed part's thermal history, crystallinity and mechanical performance was then thoroughly investigated. A heat transfer model and a non-isothermal crystallization model were constructed and employed. With rigorous validation against experimental data, previously unreported challenges in MEX thermal and crystallization modeling was highlighted. Overall, this thesis deepens the understanding of current semi-crystalline polymer's P/S/P relationship in MEX, and offers insights for the optimization and future research in the field of both experiment and simulation of MEX. / Doctor of Philosophy / Material extrusion additive manufacturing (MEX), also known as fused filament fabrication (FFF), is a popular form of 3D printing known for its cost-effectiveness and versatility in creating objects from plastic materials. Traditionally, MEX utilizes amorphous polymers because they are less prone to shrinkage and thus easier to print. However, semi-crystalline polymers, offer enhanced strength and chemicals resistance, yet they pose significant challenges in printing due to a limited understanding of their process/structure/property (P/S/P) relationships in MEX. This research aims to improve our understanding of P/S/P relationships of semi-crystalline polymers in MEX. The study utilizes a typical semi-crystalline polymer, Poly (ethylene terephthalate) (PET), as the benchmark material. The study begins with the exploration of the MEX printing of recycled PET (rPET) and its glass fiber composite, finding that with appropriate MEX parameters, both feedstocks are highly printable, and the incorporation of glass fibers substantially increased the strength of the printed parts. Subsequently, a comprehensive investigation regarding the intricate relationship between crystallinity development, mechanical properties, and the MEX printing process is conducted. Our research revealed that the MEX process and the design of the part both considerably affect the crystallinity of the final part, thereby influencing its mechanical properties. In the third chapter, a 3D heat transfer model is constructed to better understand and predict the temperature evolution of materials during MEX printing. Most importantly, the modeling results are rigorously validated against experimental data, showing promising results. However, it also reveals challenges in precisely predicting the temperature of parts under certain conditions. The research then evaluates the applicability of Nakamura non-isothermal crystallization model for MEX printing scenarios. It is found that this model underestimates crystallinity in MEX, primarily because it does not account for shear-induced crystallization, a critical factor in the process. This finding underscores the necessity for more advanced models that can effectively capture the complex dynamics of MEX. In summary, this dissertation significantly enhances our understanding of the behavior of semi-crystalline polymers in MEX printing. It sheds light on the complex relationship between the printing process, the structure of the material, and the final properties of the printed object. This work not only advances our knowledge in 3D printing but also paves the way for more sophisticated modeling approaches, optimizing the MEX process and expanding its potential applications.
66

Generation of Thermotropic Liquid Crystalline Polymer (TLCP)-Thermoplastic Composite Filaments and Their Processing in Fused Filament Fabrication (FFF)

Ansari, Mubashir Qamar 11 March 2019 (has links)
One of the major limitations in Fused Filament Fabrication (FFF), a form of additive manufacturing, is the lack of composites with superior mechanical properties. Traditionally, carbon and glass fibers are widely used to improve the physical properties of polymeric matrices. However, the blending methods lead to fiber breakage, preventing generation of long fiber reinforced filaments essential for printing load-bearing components. Our approach to improve tensile properties of the printed parts was to use in-situ composites to avoid fiber breakage during filament generation. In the filaments generated, we used thermotropic liquid crystalline polymers (TLCPs) to reinforce acrylonitrile butadiene styrene (ABS) and a high performance thermoplastic, polyphenylene sulfide (PPS). The TLCPs are composed of rod-like monomers which are highly aligned under extensional kinematics imparting excellent one-dimensional tensile properties. The tensile strength and modulus of the 40 wt.% TLCP/ABS filaments was improved by 7 and 20 times, respectively. On the other hand, the 67 wt.% TLCP/PPS filament tensile strength and modulus were improved by 2 and 12 times, respectively. The filaments were generated using dual extrusion technology to produce nearly continuously reinforced filaments and to avoid matrix degradation. Rheological tests were taken advantage of to determine the processing conditions. Dual extrusion technology allowed plasticating the matrix and the reinforcing polymer separately in different extruders. Then continuous streams of TLCP were injected below the TLCP melting temperature into the matrix polymer to avoid matrix degradation. The blend was then passed through a series of static mixers, subdividing the layers into finer streams, eventually leading to nearly continuous fibrils which were an order of magnitude lower in diameter than those of the carbon and glass fibers. The composite filaments were printed below the melting temperature of the TLCPs, and the conditions were determined to avoid the relaxation of the order in the TLCPs. On printing, a matrix-like printing performance was obtained, such that the printer was able to take sharp turns in comparison with the traditionally used fibers. Moreover, the filaments led to a significant improvement in the tensile properties on using in FFF and other conventional technologies such as injection and compression molding. / Doctor of Philosophy / In this work two thermoplastic matrices, acrylonitrile butadiene styrene (ABS) and polyphenylene sulfide (PPS), were reinforced with higher melting thermoplastics of superior properties called thermotropic liquid crystalline polymers (TLCPs). This was done so that the resulting filaments could be 3D-printed without melting the TLCPs. The goal of this work was to generate nearly continuous reinforcement in the filaments and to avoid matrix degradation, and, hence, a technology called dual extrusion technology was used for the filament generation. The temperatures required for filament generation were determined using rheology, which involves the study of flow behavior of complex fluids. Dual extrusion technology allows processing of the constituent polymers separately at different temperatures, followed by a continuous injection of multiple TLCP-streams into the matrix polymers. In addition, the use of static mixers (metallic components kept in the path of flow to striate incoming streams) leads to further divisions of the TLCP-streams which are eventually drawn by pulling to orient the TLCP phase. The resulting filaments exhibited specific properties (normalized tensile properties) higher than aluminum and contained fibers that were nearly continuous, highly oriented, and an order in magnitude lower in diameter than those of carbon and glass fiber, which are commonly used reinforcements. High alignment and lower fiber diameter are essential for printing smoother printed parts. The filaments were intended to be printed without melting the TLCPs. However, previous studies involving the use of TLCP reinforced composites in conventional technologies have reported the occurrence of orientation relaxation on postprocessing, which decreases their tensile v properties. Therefore, temperatures required for 3D printing were determined using compression molding to retain filament properties on printing to the maximum extent. On printing using an unmodified 3D printer, parts were printed by taking 180º turns during material deposition. Contrarily, the use of continuous carbon fibers required a modified 3D printer to allow impregnation during 3D printing. Moreover, the performance comparison showed that the continuous carbon fibers could not be deposited in tighter loops. The properties of the printed parts were higher than those obtained on using short fibers and approaching those of the continuous fiber composites.
67

Bimodal frequency-modulated atomic force microscopy with small cantilevers

Dietz, Christian, Schulze, Marcus, Voss, Agnieszka, Riesch, Christian, Stark, Robert W. 17 February 2015 (has links) (PDF)
Small cantilevers with ultra-high resonant frequencies (1–3 MHz) have paved the way for high-speed atomic force microscopy. However, their potential for multi-frequency atomic force microscopy is unexplored. Because small cantilevers have small spring constants but large resonant frequencies, they are well-suited for the characterisation of delicate specimens with high imaging rates. We demonstrate their imaging capabilities in a bimodal frequency modulation mode in constant excitation on semi-crystalline polypropylene. The first two flexural modes of the cantilever were simultaneously excited. The detected frequency shift of the first eigenmode was held constant for topographical feedback, whereas the second eigenmode frequency shift was used to map the local properties of the specimen. High-resolution images were acquired depicting crystalline lamellae of approximately 12 nm in width. Additionally, dynamic force curves revealed that the contrast originated from different interaction forces between the tip and the distinct polymer regions. The technique uses gentle forces during scanning and quantified the elastic moduli Eam = 300 MPa and Ecr = 600 MPa on amorphous and crystalline regions, respectively. Thus, multimode measurements with small cantilevers allow one to map material properties on the nanoscale at high resolutions and increase the force sensitivity compared with standard cantilevers. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
68

Barrier Properties of Liquid Crystalline Polymers and their Blends with PE and PETP

Flodberg, Göran January 2002 (has links)
No description available.
69

Graft Copolymerization Of P-acryloyloxybenzoic Acid Onto High Density Polyethylene

Cagirici, Seda 01 December 2003 (has links) (PDF)
The monomer, p-acryloyloxybenzoic acid (ABA) was synthesized by condensation reaction of acryloyl chloride and p-hydroxybenzoic acid in alkaline medium. Polymerization of the monomer and grafting of the produced polymer (PABA) onto high density polyethylene (HDPE) were expected to be carried simultaneously in melt mixing at high temperature. The graft copolymerization was studied at varying concentrations of the monomer in the reaction mixture at constant temperature (200 0C). Grafted HDPE samples were investigated by several techniques such as DSC, FTIR, MFI and mechanical testing. The tensile tests of PABA-g-HDPE showed an improvement particularly in stress at yield and Young&rsquo / s modulus whereas the strain at break values showed a decrease for all compositions compared to neat HDPE.
70

Synthesis Of Liquid Crystalline Copolyesters With Low Melting Temperature For In Situ Composite Applications

Erdogan, Selahattin 01 June 2011 (has links) (PDF)
The objective of this study is to synthesize nematic-thermotropic liquid crystalline polymers (LCP) and determine their possible application areas. In this context, thirty different LCP&rsquo / s were synthesized and categorized with respect to their fiber formation capacity, melting temperature and mechanical properties. The basic chemical structure of synthesized LCP&rsquo / s were composed of p-acetoxybenzoic acid (p-ABA), m-acetoxybenzoic acid (m-ABA), hydroquinone diacetate (HQDA), terephthalic acid (TPA) and isophthalic acid (IPA) and alkyl-diacids monomers. In addition to mentioned monomers, polymers and oligomers were included in the backbone such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) polymers, and polybutylene naphthalate (PBN), polyhexylene naphthalate (PHN) and poly butylene terephthalate (PBT) oligomers that contain different kinds of alkyl-diols. We adjusted the LCP content to have low melting point (180oC-280oC) that is processable with thermoplastics. This was achieved by balancing the amount of linear (para) and angular (meta) groups on the aromatic backbones together with the use of linear hydrocarbon linkages in the random copolymerization (esterification) reaction. LCP species were characterized by the following techniques / Polarized Light Microscopy, Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Analysis (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), X-ray Scattering (WAXS, Fiber diffraction), surface free energy, end group analysis (CEG), intrinsic viscosity (IV) and tensile test. According to these analysis LCPs were classified into five main categories / (I) fully aromatics, (II) aromatics+ PET/PEN, (III) aromatics + oligomers (IV) aromatics + short aliphatic diacids, (V) aromatics + long aliphatic diacids. The foremost results of the analysis can be given as below. DSC analysis shows that some LCPs are materials that have stable LC mesogens under polarized light microscopy. In TGA analysis LCPs that have film formation capacity passed the thermal stability test up to 390oC. NMR results proved that predicted structures of LCPs from feed charged to the reactor are correct. In FTIR due to the inclusion of new moieties, several peaks were labeled in the finger-print range that belongs to reactants. In X-ray analysis, LCP24 (containing PET) was found to be more crystalline than LCP25 (containing PEN) which is due to the symmetrical configuration. Block segments were more pronounced in wholly aromatic LCP2 than LCP24 that has flexible spacers. Another important finding is that, as the amount of the charge to the reactor increases CEG value increases and molecular weight of the product decreases. Selected group V species were employed as reinforcing agent and mixed with the thermoplastics / acrylonitrile butadiene styrene (ABS), nylon6 (PA6), polyethylene terephthalate (PET), polypropylene (PP) and appropriate compatibilizers in micro compounder and twin screw extruder. The blends of them were tested in dog-bone and/or fiber form. In general LCPs do not improve the mechanical properties except in composite application with polypropylene. A significant increase in tensile properties is observed by LCP24 and LCP25 usage. Capillary rheometer studies show that the viscosity of ABS decreases with the inclusion PA6 and LCP2 together. In addition to the composite applications, some LCPs are promising with new usage areas. Such as nano fibers with 200nm diameter were obtained from LCP27 by electrospinning method. The high dielectric constant of LCP29 has shown that it may have application areas in capacitors.

Page generated in 0.0808 seconds