• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 38
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Syntéza koloidních zlatých nanotyčinek pro biomedicínské aplikace / Synthesis of colloidal gold nanorods for biomedical applications

Valkovičová, Jiřina January 2014 (has links)
Diplomová práce se zabývá výrobou a využitím zlatých koloidních nanotyčinek v biomedicínských aplikacích. Konkrétně se zaměřuje na tři základní funkce nanočástic v analýze - transportní, separační a především zobrazovací. V části o využití nanočástic pro zobrazování je hlavní zájem věnován zejména povrchové plazmonové rezonanci zlatých nantyčinek. Dále je práce zaměřena na využití nanotyčinek pro termální terapii. Následující část je věnována vhodným modifikacím povrchu, hlavně za účelem zmírnění toxicity částic. Závěrem teoretické části jsou způsoby přípravy zlatých koloidních nanotyčinek a techniky jejich následné analýzy. V navazující experimetální části jsou uvedeny postupy, podmínky a výsledky provedených pokusů.
32

Easy and Fast Phase Transfer of CTAB Stabilised Gold Nanoparticles from Water to Organic Phase

Kittler, S., Hickey, Stephen G., Wolff, T., Eychmüller, A. 12 August 2014 (has links)
No / Spheric and anisotropic gold nanoparticles (GNPs) such as rods, stars or nanoprism prepared using hexadecyltrimethyl ammonium bromide (CTAB) as the stabilising agent have received a great deal of interest in the last years. The literature procedures exploited lead to GNPs in aqueous solution. We herein describe a fast, efficient, and cheap method to transfer particles of different shapes from water into toluene solution via ligand exchange (CTAB to dodecanethiol), which was mediated by acetone as a cosolvent. Absorption spectra and TEM-pictures before and after the transfer revealed that the particles survived the transfer intact and without change in shape.
33

New NMR methods for mixture analysis

Hernandez Cid, Aaron January 2017 (has links)
This thesis is focussed on the investigation of matrices for matrix-assisted diffusion-ordered spectroscopy (MAD). Diffusion-ordered spectroscopy (DOSY) is a family of experiments where the resonances in the chemical shift dimension are further dispersed in an extra dimension according to diffusion coefficient. A typical DOSY spectrum shows one single diffusion coefficient for all the resonances coming from one single species. However, If two or more resonances overlap, the diffusion resolution of the DOSY spectrum is compromised and a spurious diffusion coefficient results, intermediate between the species. In case of signal overlap, the use of more advanced processing methods aids to separate two analytes that differ by at least 30% in diffusion coefficient. In practice, many mixtures contain species of similar diffusion coefficients whose resonances overlap in the chemical shift dimension. The addition of co-solutes can modify the chemical environment (matrix), with which different analytes interact to different extents, and enhance the diffusion resolution of DOSY. However, the addition of co-solutes can risk the benefits of DOSY by increasing the probability of signal overlap. Signal overlap in MAD is avoided by using a 1H NMR-invisible surfactant such as sodium perfluorooctanoate (NaPFO), which has replaced each proton by a fluorine atom. PFO micelles are a tunable matrix which allows the separation of analytes via coulombic interactions by adjusting the pH. Differences in diffusion coefficient in NaPFO solution can be analysed using a modified Lindman's law to model the diffusion coefficient as a function of pH. The model rationalises the binding constants of analytes to PFO micelles with good accuracy, subject to the spectral data quality. Another alternative to resolve diffusion coefficients using the invisible MAD approach is by means of a commercially available alkyl surfactant like cetyltrimethylammonium bromide (CTAB). CTAB in high ionic strength solution forms worm-like micelles whose resonances can be filtered out from the final DOSY spectrum. CTAB worm-like micelles have short transverse relaxation times compared to all of the analytes in the mixture. If a transverse relaxation filter is positioned at the beginning of a standard DOSY pulse sequence, as in PROJECT-Oneshot, the strong CTAB signals vanish and leave behind only the analyte resonances and hence avoid signal overlap. Finally, the use of bovine serum albumin (BSA) as a potential invisible matrix, using a similar approach to CTAB worm-like micelles is investigated, using a relaxation-weighted DOSY pulse sequence to suppress most of the BSA background signal (at a cost in analyte signal to noise ratio). An alternative to suppress most of the BSA background and preserve most of the analyte signal is by means of mild transverse relaxation filtration and spectral editing to obtain an edited DOSY spectrum that shows only the analyte signals. Nonetheless, it is a shame that useful MAD results can only be obtained under a narrow set of conditions: i) different mole ratios BSA: analyte to aid diffusion resolution, ii) mild T2 filtration to improve analyte signal to noise ratio and iii) spectral editing to remove residual BSA background.
34

Příprava a charakterizace koloidů hyaluronanu s micelárními agregáty pro nanomedicínské aplikace. / Hyaluronan-Micelle Aggregates and their Potential for Nanomedicine Applications

Pilgrová, Tereza January 2018 (has links)
This thesis deals with the study of preparation and characterization of hyaluronan-micelle aggregates. The theoretical part deals with drug delivery systems, characterization of used materials and methods especially fluorescence spectroscopy, dynamic light scattering and turbidimetry. Methods of determination of measured data are summarized in the experimental section. The result section is divided into two subsections dedicated to different preparation methods of hyaluronan-surfactant complexes. Induced aggregates of hyaluronan with Septonex are characterized in terms of their origin and stability, and the results are compared with previously studied surfactants CTAB. In the second part are discussed so-called decorated micelles, their formation, properties and stability.
35

Studium interakce záporně nabitých vezikulárních systémů s polykationty / Study of interaction of negatively charged vesicular systems with polycations

Repová, Romana January 2020 (has links)
This diploma thesis deals with the preparation and characterization of negatively charged catanionic vesicular systems and their combination with selected polycations. The catanionic vesicular system was prepared by mixing of two oppositely charged surfactants SDS and CTAB. The negative charge as well as the stability of the vesicular system was provided by the incorporation of phosphatidic acid. Polycations, DEAE and TMC, have been selected for use in a pharmaceutical applications. Characterization of the prepared systems was performed by measuring DLS and ELS. The results indicate that we were able to prepare stable negatively charged vesicles that were eligible to non-covalently interact with selected polycations.
36

Fonctionnalisation des minéraux argileux d'origine marocaine par TiO2 en vue de l'élimination par photocatalyse de micropolluants organiques des milieux aqueux / Functionalization of clay minerals from Morocco with TiO2 for the removal by photocatalysis of organic micropollutants from aqueous media

Bouna, Lahcen 02 November 2012 (has links)
Ce travail est consacré à l'élaboration par voie humide (pontage, solvothermale et colloïdale) de photocatalyseur TiO2 supporté sur trois types de minéraux argileux d'origine marocaine: la stévensite, la beidellite et la palygorskite, à leurs caractérisations et finalement à l'évaluation de leurs activités photocatalytiques vis-à-vis de l'élimination en milieu aqueux du colorant anionique l'Orange G (OG) très utilisé en industrie textile. La stévensite et la beidellite sont toutes les deux des smectites de types magnésien trioctaédrique et aluminifère dioctaédrique respectivement. En revanche, la palygorskite est un minéral fibreux riche en Al doté d'un caractère dioctaédrique très marqué. Les matériaux photocatalyseurs supportés développés par le pontage de la stévensite ou de la beidellite ne révèlent pas de formation de piliers interlamellaires de TiO2, mais plutôt l'obtention dans les deux cas de matrice de TiO2 amorphe dans laquelle sont éparpillées quelques rares particules indemnes de phyllosilicates. De même, ceux à base de stévensite élaborés par la méthode solvothermale révèlent des particules du phyllosilicate désintégrées au sein d'une matrice de TiO2 toutefois cristallisée sous forme d'anatase. Néanmoins, la fonctionnalisation selon la voie colloïdale a permis d'immobiliser avec succès des nanoparticules d'anatase (10 nm) sur aussi bien des feuillets plus ou moins exfoliés de stévensite ou de beidellite que sur des fibres de palygorskite. L'anatase attachée aux particules de ces minéraux argileux demeure extraordinairement stable jusqu'à 900 °C alors que celle formée en absence de ces phyllosilicates se convertit complètement en rutile vers 650 °C. Cette stabilité remarquable de l'anatase supportée est due à l'empêchement de la croissance, par coalescence à haute température, de la taille de ses particules au-delà de la taille critique (30 nm) requise pour sa conversion en rutile relativement moins photoactive. Les essais de photocatalyse révèlent que l'activité catalytique des différents matériaux élaborés croit selon la méthode de fonctionnalisation: pontage - méthode solvothermale - voie colloïdale et aussi selon la nature du minéral argileux : stévensite - beidellite - palygorskite. En outre, les matériaux photocatalyseurs supportés, à base de beidellite ou de palygorskite, développés par la voie colloïdale, manifestent une activité deux fois supérieure à celle de la poudre commerciale TiO2 Degussa P25. Leurs particules floculent aisément, ce qui facilite leur élimination du milieu aqueux sans recourir à la microfilitration requise dans le cas de la Degussa P25. / This work was devoted to the elaboration by wet route (pillaring, solvothermal and colloidal) of TiO2 supported photocatalysts on three kinds of clay minerals (stevensite, beidellite and palygorskite) from Morocco, to their characterizations and finally to the evaluation of their photocatalytic activities towards the removal from aqueous media of anionic Orange G dye, widely used in textile industry. Stevensite and beidellite were magnesian trioctahedral and aluminiferous dioctahedral smectites respectively. Nevertheless, palygorskite was a fibrous Al-rich clay mineral with a predominant dioctahedral character. The photocatalyst materials elaborated by the pillaring of stevensite or beidellite did not reveal the formation of TiO2 interlayer pillars, but the observation of an amorphous matrix of Ti-rich phase within which were distributed some rare unaltered particles of phyllosilicates. Those based on stevensite elaborated according to solvothermal method also showed dissolved phyllosilicates particles, but within crystalline TiO2 anatase matrix. Nevertheless, the functionalized materials developed according to colloidal route exhibited successful immobilization of anatase nanoparticles (10 nm) onto as well as more or less exfoliated layers of stevensite or beidellite than on palygorskite fibers. Anatase remained remarkably stable up to 900 °C when attached to particles of clay minerals in comparison with that developed in their absence which underwent a complete transformation into rutile at around 650°C. This remarkable stability at high temperature of anatase supported on clay minerals particles was due to the hindrance of particles growth by sintering whose the sizes remained below the nucleus critical sizes (30 nm) required for its transition into less photoactive rutile. The photocatalysis tests revealed that the catalytic activity of different elaborated materials increased according to the synthesis route: pillaring process - solvothermal method - colloidal route and according to the nature of clay mineral: stevensite - beidellite - palygorskite. In addition, the supported photocatalysts based on beidellite or palygorskite prepared by colloidal route were found to be twice more active than the commercial TiO2 powder Degussa P25. Furthermore, their particles easily floculated so that they are readily removable from treated solutions without resorting to expensive microfiltration required upon the use of Degussa P25.
37

Soft Matter Under Electric Field And Shear

Negi, Ajay Singh 04 1900 (has links)
‘Soft condensed matter’ is a newly-emerged sub-discipline of physics concerned with the study of systems that are mechanically soft such as colloids, emulsions, surfactants, polymers, liquid crystals, granular media and various biomaterials including DNA and proteins. These materials display a broad range of interesting microstructures and phase behaviours and have a myriad of applications in the materials, food, paint and cosmetic industries as well as medical technologies. Soft condensed matter physics presents new opportunities and challenges for the development of new ideas and concepts in experimental and theoretical physics alike. Because the field overlaps with many different disciplines, the study of soft matter also offers promising developments to other fields of science including chemistry, chemical engineering, materials science, biology, and environmental science. The behaviour of these systems is dominated by one simple fact: they contain mesoscopic structures in the size range 10 nm to 1 µm that are held together by weak entropic forces. The elastic constants of these materials are 109 times smaller than the conventional atomic materials and hence are easily deformable by external stresses, electric or magnetic fields, or even by thermal fluctuations. We have studied two important classes of soft matter systems in this thesis -colloidal suspensions and surfactant systems. The thesis is divided into two main themes: (a) Effects of electric field on the colloidal suspensions, and (b) Effects of shear on surfactant solutions. Motions of colloidal particles under the influence of applied electric field were observed under a microscope and were studied using image analysis and particle tracking. We have also used tracking of thermal fluctuations of colloidal particles embedded in surfactant gels to study microrheology of surfactant solutions. Linear and non-linear rheology of aqueous solutions of cationic cetyltrimethyl ammonium bromide (CTAB) and anionic sodium-3-hydroxynapthalene-2-carboxylate (SHNC) were studied using bulk rheology in a commercial rheometer. Rheological studies of an anionic surfactant sodium dodecyl sulphate (SDS) in the presence of strongly binding counterion p-toluidine hydrochloride (PTHC) has also been done. Chapter 1 starts with a general introduction to soft condensed matter systems and then we proceed to describe two specific class of soft condensed materials which we have studied in this thesis -colloidal suspensions and surfactant/water systems. After describing different types of colloids, we discuss why colloids are suitable as model systems in condensed matter physics. This is followed by a discussion on the chemical structure, phase behaviour and self assembling properties of surfactant molecules in water. We then discuss the inter-macromolecular forces such as van der Waals interaction, the screened Coulomb repulsion, hydrogen bond, hydrophobic and hydration forces and steric repulsion which are the major players in the interaction in soft condensed matter systems. The systems that have been the subject of our experimental studies, viz. polystyrene colloidal suspensions, CTAB+SHNC, SDS+PTHC and CTAT have also been discussed in detail. Then we have given an overview of effects of electric field on the colloidal suspensions. Two types of geometries have been discussed: one in which the field is parallel to the plates and another when the field is perpendicular to the electrodes. Application of colloidal particles in diagnostic tests (Latex Agglutination Tests) has been discussed after this. Some methods used to enhance the sensitivity of LATs have also been reviewed. This is followed by a theoretical background of linear and non-linear rheology. We have also given an introduction to digital video microscopy, its advantages and discussed few quantities like pair correlation function, structure factor which can be extracted using digital video microscopy and particle tracking. The concluding part of this chapter describes the organization of this thesis. Chapter 2 discusses the experimental apparatus and techniques used in our studies. We describe our setup for applying the electric field to the colloidal particles and imaging and tracking their motion. We also discuss the image processing and analyzing methods for extracting the useful quantities from the digitized images. We have described the various components of the MCR-300 stress-controlled rheometer (Paar Physica, Germany) and the AR-1000N stress-controlled rheometer (T. A. Instruments, U. K.) followed by different experimental geometries that we have used for our experiments. Next we have described the various experiments that can be done using a commercial rheometer. Calculation of surface charge of colloidal particles using a conductivity meter has been demonstrated for our colloidal particle suspensions. We also describe the sample preparation methods employed in different experiments. In Chapter 3, we have discussed our study of clustering of colloidal particles under the influence of an ac electric field as a function of frequency. The field was applied in a direction perpendicular to the confining walls. Two regimes are observed, a low frequency regime where the clusters are isotropic with a local triangular order and a new high-frequency regime where the clusters are highly elongated (anisotropic) with no local order. The crossover from one regime to the other occurs at a critical frequency, fc. The formation of elongated clusters seen at high frequencies is explained in terms of rotation of particles due to a phase lag between the polarization of the electric double layer around a particle and the applied electric field that arises because of inhomogeneities of the conducting surface. We have also observed that the threshold field for the cluster formation, Eth, increases with frequency in both the regimes. We did these studies on two different sizes of particles and found that both Eth and fc were lower for the larger particles. Our model based on particle rotation was able to estimate the value of fc correctly for both the sizes of the particles. Chapter 4 describes a method employing an ac electric field applied perpendicular to the confining walls to increase the sensitivity of recognition of ligands by their corresponding receptors grafted on Brownian latex particles. Application of electric field assists the colloidal micro-particles grafted with receptors to come nearer due to electro-hydrodynamic drag. This increase in the local concentration of the latex particles results in improving the chances of ligand-receptor interaction leading to the aggregation of the latex particles. With this technique we have been able to increase the sensitivity of the ligand-receptor recognition by a factor as large as 50. We have demonstrated the utility of our method using streptavidin as the model receptor and biotinylated RNase A as the model ligand. We have also applied our technique to a commercially available kit for rheumatoid factor (RF) with successful results. The same method was also successfully applied for the detection of typhoid whose antibodies were purified and attached to polystyrene particles by our collaborators from DRDE Gwalior. In Chapter 5, we have studied the statics and dynamics of colloidal particles at different applied electric fields from zero to beyond the threshold field. We have taken a series of time-lapsed images and calculated out the pair-correlation function, mean squared displacement, structure factor, non-Gaussian parameter etc. We have studied both mono-dispersed colloidal system and binary colloidal system (mixture of two different sizes of particles). The aggregates formed in the two cases were analysed with the help of Voronoi polygons to quantify the microscopic structure. In mono-dispersed system, the aggregates formed were two-dimensional hexagonal crystals and we have used this system to study the freezing transition in 2-dimension. The properties of the system in the liquid and the crystalline state satisfy various criteria for the 2-d freezing transition. The first maximum of the structure factor at the voltage at which freezing occurs, is 5.5 as has been suggested for the 2-d freezing. This is reflected in the dynamics of the system also, where the ratio D/D0 falls below 10%, in accordance with the LPS (L¨owen, Palberg, Simon) criterion for freezing in 2-d colloidal systems [Phys. Rev. Lett. 70, 1557 (1993)]. However, in the binary colloidal system the clusters formed were not crystalline but more like 2-d dense liquids. A closer inspection of these clusters reveals that the motion of a smaller subset of particles is cooperative and follows string-like paths. The mean square displacement of such a system shows a plateau in the intermediate times which indicates the “caging” of particles by its neighbours. A peak in non-gaussian parameter indicates the presence of dynamical heterogeneities in the system. In Chapter 6, we have described the use of multiple particle tracking to study the microrheology of semidilute solutions of wormlike micelles and compared the results with those from macrorheology experiments done on the same samples. Two concentrations of CTAT (1.3% and 2%) were used. We observed that, in spite of the mesh size being much smaller than the size of the probe particles, the viscoelastic response function calculated using the one-point microrheology does not match with that measured from macrorheology. This can be attributed to the fact that there is another important length scale in the system, the mean micellar length, and it is comparable to the probe particle size. Two-point microrheology was successful in verifying the macrorheology results for CTAT 1.3% but it fails to do so for CTAT 2%. We attribute this to the fact that in a higher viscosity sample (2%), the hydrodynamic force propagate to a lesser distance, thereby limiting the measurable correlation between the particles and precluding the success of two-point microrheology. Chapter 7 describes a rheological study of aqueous solutions of varying concentration of cationic cetyltrimethyl ammonium bromide (CTAB) and anionic sodium-3-hydroxynapthalene-2-carboxylate (SHNC) kept at a fixed molar concentration ratio [CTAB]/[SHNC] = 2. At this molar ratio, the surfactants self-assemble into wormlike micelles which get entangled above the overlap concentration to form viscoelastic gel. The range of the total surfactant concentration φ varies from 1.17% to 5.16% by weight. We found that, plateau modulus, G0, shows a power law dependence on the surfactant concentration, φ, with an exponent 3, which is higher than the expected value of 2.25 observed for the one-component wormlike micelles. Zero shear viscosity, η0, and relaxation time, τR show a maximum at the surfactant concentration, φmax = 1.9% in contrast to a monotonic increase with φ. We propose that this non-monotonic behaviour is due to the unusual dependence of the average micellar length L ¯on φ, showing a maximum in average micellar length L at φmax. This argument provides a strong support to the model of micellar growth in the presence of electrostatic interactions developed by Mackintosh et. al [Europhys. Lett. 12, 697 (1990)]. The presence of electrostatic interactions also appears in the behaviour of the plateau modulus G0 that exhibits a larger φ dependence than in highly screened micelles. In the non-linear flow experiments, a minimum observed in critical shear rate (the shear rate at which shear thinning starts), ˙γc, at φmax strengthens our arguments. In Chapter 8, we describe the phase behaviour and rheology of SDS+PTHC (sodium dodecyl sulphate + p-toluidine hydrochloride) micellar solutions at different molar ratios α=[PTHC]/[SDS]) of the two components. At low values of α, polarizing microscopy observations reveal a transition from an isotropic to a nematic phase of disk-like micelles, whereas a transition to a lamellar phase occurs at higher α values > 0.5, on increasing the surfactant content. Linear rheology of the isotropic micellar solution reveal a viscous behaviour over a large range of surfactant concentrations. Surprisingly, this also extends to the nematic phase of disk-like micelles observed at α =0.2 and φ =0.35. These systems also exhibit a viscoelastic behaviour over a narrow range of surfactant concentration as reported in earlier studies. The extent of the viscoelastic region of the isotropic micellar solution also decreases with increase in α. Frequency sweep curves in this region, scaled on to a master curve is reminiscent of dilute suspensions of hard spheres or rigid Brownian rods. Consistent with the results from oscillatory shear measurements, the f;ow behaviour examined under steady shear is Newtonian over a large range of surfactant content in the isotropic micellar solution. An interesting result in these studies is the non-monotonic behaviour of the viscosity with increase in surfactant concentration. It is likely that the sharp rise in viscosity arises from a jamming effect of the rigid rods. Dynamic light scattering studies suggest that the drop in viscosity is due to the decrease in the length of the micellar aggregates. This is followed by a change in the morphology of the micelles from rods to disks as indicated by the transition to a nematic phase of disk-like micelles or a lamellar phase. A change in the morphology of micellar aggregates with increase in α is expected in mixed surfactant systems with strongly binding counterions. However, the surprising result is the change in morphology of the micellar aggregates with surfactant content. Such a behaviour is seen in mixed surfactant systems for the first time. The thesis concludes with a summary of our main results and a brief discussion of the scope of future work in Chapter 9.
38

Phase Phenomena in Polymer Networks : Empirical Studies on the Influence of Hydrophobicity, Charge Density and Crosslinks on Macroion-Induced Phase Transitions in Polyelectrolyte Gels

Andersson, Martin January 2011 (has links)
The thesis concerns polyelectrolyte gels in contact with oppositely charged proteins and surfactant micelles, and includes of four papers (I-IV). In paper I confocal Raman spectroscopy was introduced as a method to trace micelles and investigate the structure of gel-surfactant complexes, in phase separated gel spheres. In paper II, the binding of surfactants to microspheres (~50-100 µm) was investigated by means of a micromanipulator-assisted microscopy method. The two surfactants were found to display qualitative difference respect to degree of swelling, surfactant distribution in the gels, and the difference is discussed in terms of absence/presence of hydrophobic attraction to the polyelectrolyte gel network. Kinetics of volume change in gels were analyzed. Aggregation numbers of micelles in polystyrenesulfonate (PSS) solutions, obtained from fluorescence quenching measurements, are presented. In paper III, phase behaviour, protein assembly and diffusion, was studied in PSS gel microspheres. Interpretation of results was aided by measurements of osmotic swelling of individual gel networks, and by combining the results with studies of protein diffusion in macroscopic (cm-sized) gel spheres. Complexes formed were further analyzed with small angle x-ray spectroscopy. In paper IV phase behaviour of mixed ionic/nonionic surfactant micelles is investigated in cm-sized gel spheres. The coexistence of three phases, the formation of dense shells in the bulk of the gels and other phenomena are described for the first time, and the results are presented along with discussion on the charge-density of spherical micelles and of  network induced hysteresis effects in gels. The composition and microstructure of phases are investigated by confocal Raman spectroscopy and small-angle x-ray scattering respectively. The results are interpreted with aid of highly detailed theoretical model calculations.

Page generated in 0.0319 seconds