• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biohydrogen production and metabolic pathways in dark fermentation related to the composition of organic solid waste / Lien entre production de biohydrogène et métabolites microbiens par voie fermentaire et la composition des déchets organiques solides

Guo, XinMei 20 July 2012 (has links)
Cette étude vise à étudier l'effet de la composition de substrats organiques solides sur les performances de production d'hydrogène, les voies métaboliques associées et les changements des communautés microbiennes dans un réacteur discontinu (sCSTR). L'hydrogène est un vecteur énergétique idéal qui a gagné en intérêt scientifique au cours de la dernière décennie. L'H2 produit par voie biologique, ou biohydrogène, peut être produit par des procédés de fermentation sombre où les déchets organiques sont traités et avec la production de molécules à haute valeur ajoutée. Cependant, l'effet de la composition des déchets organiques solides sur la production de biohydrogène dans la fermentation sombre n'a pas encore été clairement élucidé. Au cours de cette étude, une revue bibliographique a été réalisée sur la production d'hydrogène à partir de déchets agricoles. Cette revue montre qu'une large gamme de performances en hydrogène peut être observée principalement en raison de la variabilité dans les compositions en même type de substrats et des conditions expérimentales appliquées. Après avoir optimisé un protocole de test de potentiel biohydrogène (BHP), une grande variété de substrats organiques solides visant à couvrir un grand panel de déchets a été testée pour fournir des données comparables à analyser. Les résultats d'une régression PLS ont montré que seuls les sucres solubles ou facilement disponibles éteint corrélaient avec la production d'hydrogène. En outre, les rendements d'hydrogène corrélaient aussi bien avec l'accumulation de butyrate, principale voie productrice de bioH2. Un modèle prédictif du rendement en hydrogène en fonction de la teneur en sucres a été proposé. Ensuite, des expériences ont été menées en réacteur semi-continu (sCSTR) avec le topinambour comme substrat solide. Il a été montré qu'une faible charge organique favorisait une production continue d'hydrogène tandis que l'accroissement de la charge organique introduisait la présence de voies concurrentes à la production d'hydrogène. De plus, les profils des empreintes moléculaires basées sur l'ADNr 16s ont montré que l'augmentation de la charge organique avait un impact significatif sur la diversité microbienne en favorisant l'implantation de microorganismes ne produisant pas d'hydrogène tels que des bactéries lactiques. / This study aims to investigate the effect of solid substrates composition on hydrogen production performances, metabolic pathways and microbial community changes in batch reactor and their dynamics in semi continuous reactors (sCSTR). Hydrogen is an ideal energy carrier which has gained scientific interest over the past decade. Biological H2, so-called biohydrogen, can especially be produced by dark fermentation processes concomitantly with value-added molecules (i.e. metabolic end-products), while organic waste is treated. However, the effect of solid organic waste composition on biohydrogen production in dark fermentation has not yet been clearly elucidated. In this study, a bibliographic review was made on hydrogen production from agricultural waste. This survey on literature showed that diverse performances were reported on hydrogen production due to the variability in substrate compositions and experimental conditions. After having optimized a protocol of biohydrogen potential test (BHP), a wide variety of organic solid substrates aiming to covering a large range of solid waste was tested to provide a comparable data analysis. The results of a PLS regression showed that only soluble carbohydrates or easily available carbohydrates correlated with hydrogen production. Furthermore, hydrogen yields correlated as well with butyrate H2-producing pathway which is consistent with the literature knowledge. A predictive model of hydrogen yield according to carbohydrate content was proposed. Then, experiments were carried out in sCSTR with Jerusalem artichoke tubers as a case study. It was shown that low organic loading rate favored continuous hydrogen production while higher organic loading introduced hydrogen competition pathways and decreased the overall hydrogen yields. Moereover, 16S rRNA gene based CE-SSCP profiles showed that increasing OLR had a significant effect on the microbial diversity by favoring the implementation of microorganisms not producing hydrogen, i.e. lactic acid bacteria.
2

Couplage de la fermentation sombre et de l’électrolyse microbienne pour la production d’hydrogène : formation et maintenance du biofilm électro-actif / Coupling dark fermentation and microbial electrolysis for hydrogen production : process and mecanisms occuring during formation and conservation of electroactive biofilm

Pierra, Mélanie 06 December 2013 (has links)
L'hydrogène, qui constitue une solution alternative et durable à l’usage d’énergies fossiles, est produit essentiellement par reformage de combustibles fossiles (95%). Des filières de production plus soucieuses de l'environnement sont envisagées. Deux familles de technologies sont explorées: 1) par décomposition thermochimique ou électrochimique de l'eau et 2) à partir de différentes sources de biomasse. Parmi celles-ci, les cellules d'électrolyse microbienne ou «Microbial electrolysis cell (MEC)» permettent de produire de l'hydrogène par électrolyse de la matière organique. Une MEC consiste en une cathode classique qui assure la production d'hydrogène par la réduction électrochimique de l'eau, associée à une bioanode qui oxyde des substrats organiques en dioxyde de carbone. Ce processus d'oxydation n'est possible que grâce au développement sur l'anode d'un biofilm microbien électroactif qui joue le rôle d'électro-catalyseur. Par rapport aux procédés courants d'électrolyse de l'eau, une MEC requière un apport énergétique 5 à 10 fois plus faibles. En outre, les procédés « classiques » de production de bio-hydrogène par voie fermentaire en cultures mixtes convertissent des sucres avec des rendements limités à 2-3 moles d'hydrogène par mole d'hexose tout en coproduisant des acides organiques. Alimenté par de l'acétate, une MEC produit au maximum 3 moles d'hydrogène/mole d'acétate. Le couplage de la fermentation à un procédé d'électrolyse microbienne pourrait donc produire de 8 à 9 moles d'hydrogène/mole d'hexose, soit un grand pas vers la limite théorique de 12 moles d'hydrogène/mole d'hexose. L'objectif de cette thèse est d'analyser les liens entre la structure des communautés microbiennes dans les biofilms électroactifs et en fermentation, les individus qui les composent et les fonctions macroscopiques (électroactivité du biofilm, production d'hydrogène) qui leur sont associées dans des conditions permettant de réaliser le couplage des deux procédés. L'originalité de cette étude a été de travailler en milieu salin (30-35 gNaCl/L), favorable au transport de charges dans l'électrolyte de la MEC. Dans un premier temps, la faisabilité de la fermentation en conditions salines (3-75 gNaCl/L) a été démontrée en lien avec l'inhibition de la consommation de l'hydrogène produit et une forte prédominance d'une nouvelle souche de Vibrionaceae à des concentrations en sel supérieures à 58 gNaCl/L. D'autre part, la mise en œuvre de biofilms électroactifs dans des conditions compatibles avec la fermentation sombre a permis la sélection d'espèces dominantes dans les biofilms anodiques et présentant des propriétés électroactives très prometteuses (Geoalkalibacter subterraneus et Desulfuromonas acetoxidans) jusqu'à 8,5 A/m². En parallèle, la sélection microbienne opérée lors d'une méthode d'enrichissement utilisée pour sélectionner ces espèces à partir d'une source d'inoculum naturelle sur leur capacité à transférer leurs électrons à des oxydes de Fer(III) a été étudiée. Une baisse des performances électroactives du biofilm liée à une divergence de sélection microbienne dans ces deux techniques de sélection mène à limiter le nombre de cycle d'enrichissement sur Fer(III). Cependant, l'enrichissement sur Fer(III) reste une alternative efficace de pré-selection d'espèces électroactives qui permet une augmentation de rendement faradique de 30±4% à 99±8% par rapport au biofilm obtenu avec un inoculum non pré-acclimaté. Enfin, l'ajout d'espèces exogènes issues de la fermentation sombre sur le biofilm électroactif a révélé une baisse de l'électroactivité du biofilm se traduisant par une diminution de la densité de courant maximale produite. Cette baisse pourrait s'expliquer par à une diminution de la vitesse de transfert du substrat due à un épaississement apparent du biofilm. Cependant, un maintien de sa composition microbienne et de la quantité de biomasse laisse supposer une production d'exopolymères (EPS) dans le biofilm en situation de couplage. / Nowadays, alternative and sustainable solutions are proposed to avoid the use of fossil fuel. Hydrogen, which constitutes a promising energy vector, is essentially produced by fossil fuel reforming (95%). Environmentally friendly production systems have to be studied. Two main families of technologies are explored to produce hydrogen: 1) by thermochemical and electrochemical decomposition of water and 2) from different biomass sources. Among those last ones, microbial electrolysis cells (MEC) allow to produce hydrogen by electrolysis of organic matter. A MEC consists in a classical cathode, which provides hydrogen production by electrochemical reduction of water, associated to a bio-anode that oxidizes organic substrates into carbon dioxide. This process is only possible because of the anodic development of an electroactive microbial biofilm which constitutes an electrocatalyst. In comparison to classical water electrolysis process, a MEC requires 5 to 10 times less electrical energy and therefore reduces the energetic cost of produced hydrogen. Furthermore, classical process of dark fermentation in mixed cultures converts sugars (saccharose, glucose) to hydrogen with a limited yield of 2-3 moles of hydrogen per mole of hexose because of the coproduction of organic acids (mainly acetic and butyric acids). Fed with acetate, a MEC can produce up-to 3 moles of hydrogen per mole of acetate. Therefore, the association of these two processes could permit to produce 8 to 9 moles of hydrogen per mole of hexose, which represents a major step toward the theoretical limit of 12 moles of hydrogen per mole of hexose.Therefore, this work aims at analyzing the relationship between microbial community structures and compositions and the associated macroscopic functions (biofilm electroactive properties, hydrogen production potential) in electroactive biofilms and in dark fermentation in conditions allowing the coupling of the two processes. The originality of this study is to work in saline conditions (30-35 gNaCl/L), which favors the charges transfer in the MEC electrolyte.First of all, feasibility of dark fermentation in saline conditions (3-75 gNaCl/L) has been shown. This was linked to an inhibition of produced hydrogen consumption and the predominance of a new Vibrionaceae species at salt concentrations higher than 58 gNaCl/L. Secondly, electroactive biofilm growth in conditions compatibles to dark fermentation (pH 5.5-7 and fed with different organic acids) allowed to select dominant microbial species in anodic biofilms that present promising electroactive properties (Geoalkalibacter subterraneus and Desulfuromonas acetoxidans) with maximum current densities up to 8.5 A/m². In parallel, the microbial selection occurring during iron-reducing enrichment method used to select species from a natural inoculum source and based on their capacity to transfer electrons to iron oxydes (Fe(III)) has been studied. A decrease of electroactive performances of the biofilm linked to the divergence of microbial selection led to a limitation of the number of iron-enrichment steps. However, enrichment on Fe(III) presents an efficient alternative to pre-select electroactive species with an increase of coulombic efficiency from 30±4% to 99±8% in comparison with a biofilm obtained with a non-acclimated inoculum. Finally, the addition of exogenous bacteria from a dark fermenter on the electroactive biofilm revealed a decrease of electroactivity with a decrease of maximum current density produced. This diminution could be explained by a lower substrate transfer due to an apparent thickening of the biofilm. Nevertheless, the stability of microbial composition and of bacterial quantity on the anode suggests that a production of exopolymers (EPS) occurred.
3

Production de Polyhydroxybutyrates à partir d'acides gras volatils en culture ouverte : influence du degré de limitation en phosphore sur les réponses cinétiques et les sélections microbiennes. / Production de Polyhydroxybutyrates à partir d'acides gras volatils en culture ouverte : influence du degré de limitation en phosphore sur les réponses cinétiques et les sélections microbiennes

Cavaille, Laetitia 01 June 2015 (has links)
La production de biopolymères de type polyhydroxyalkanoates (PHA) est une alternative attractive pour remplacer, en partie, les plastiques produits à partir de ressources fossiles. Les contraintes techniques imposées par les cultures pures (substrat purifié, stérilité…) impliquent un coût de production qui rend la production de ces bioplastiques difficilement compétitive par rapport à celle des plastiques conventionnels. L’utilisation de cultures non axéniques permettrait de palier les contraintes des cultures pures mais nécessite une étape de sélection des microorganismes producteurs naturels de PHA. A partir d’un inoculum issu de boues d’épuration et de substrats de types AGV (acide butyrique et acétique), une stratégie de limitation de la croissance par le phosphore pour accumuler du PHB a été mise en place. Nous avons étudié, avec les modes de culture fed-batch et continu, le potentiel de sélection de souches productrices et de production de PHA en fonction des paramètres opératoires (taux de dilution) et environnementaux (degré de limitation en phosphore). L’objectif scientifique a consisté à améliorer les connaissances sur le rôle d’une limitation en phosphore selon les conditions opératoires du procédé, tout d’abord sur la nature des souches sélectionnées, et ensuite sur la croissance et l’accumulation de PHB. Pour cela, une démarche associant l’identification des micro-organismes en dynamique par une technique de pyroséquençage, une caractérisation cinétique des micro-organismes sélectionnés, une analyse procédé et le développement d’une modélisation cinétique a été effectué. L’objectif final du travail visait l’optimisation des procédés de production de PHB en culture non axénique : productivité, rendement, titre final en PHB mais aussi fiabilité et robustesse, en vue de définir une stratégie de production optimale de PHA. Les performances atteintes lors des cultures en fed-batch se situent parmi les meilleures de la littérature (70% de PHA) en cultures mixtes sans étape d’enrichissement préalable en microorganismes producteurs. Les résultats ont montré le rôle de la limitation phosphore sur le déclenchement de la production de PHB. En chémostat, l’analyse des paramètres macro-cinétiques, à partir des sélections microbiennes, a révélé des cinétiques de conversion du substrat carboné en PHB, biomasse catalytique et CO2 dépendantes du degré de limitation en phosphore et du taux de croissance. Le taux de phosphore intracellulaire (dépendant du taux de croissance et du degré de limitation phosphore), est le paramètre gouvernant la conversion du carbone. De plus, ce rôle a été observé pour toutes les populations sélectionnées sous limitation phosphore, démontrant un comportement universel de ces populations face à une limitation phosphore. En parallèle, des études dynamiques en batch à partir de ces populations ont permis de caractériser les paramètres cinétiques des souches, montrant une vitesse maximale de production de PHB de 0,6 et 1,2 Cmol/Cmol.h avec acide acétique et butyrique respectivement. Ces hypothèses réalisées à partir des observations expérimentales ont permis l’établissement d’un nouveau modèle cinétique basé sur le rôle du phosphore intracellulaire sur la conversion du carbone. La confrontation de ce modèle aux résultats expérimentaux a conforté et amélioré la compréhension des processus de dilution intracellulaire du phosphore et de stockage de PHB. Ce modèle a également permis d’explorer une large gamme de conditions environnementales et de prédire les comportements microbiens d’organismes producteurs et non producteurs. A partir des résultats observés et du modèle cinétique établi, les performances de différentes configurations de procédés de production de PHA ont pu être discutées : chémostat simple ou double étage, fed-batch, chémostat et batch... Les performances en termes de productivités, taux de PHB intracellulaires, degré de sélection de producteurs et robustesse du procédé sont comparées. / The production of polyhydroxyalkanoates (PHA) is an attractive alternative for plastics produced from fossil resources. The technical constraints imposed by pure cultures (purified substrate, sterilization ...) involve a high production cost of PHA production, and the production of these bioplastics is hardly competitive. The use of non-axenic cultures would avoid the constraints of pure cultures but requires a selection step of PHA producers. From a microbial inoculum (activated sludge) and AGV (butyric and acetic acid), a strategy for limiting the growth by phosphorus to accumulate PHB was established. From fed-batch and continuous culture, we studied the selection of PHA producers and the production of PHA based on operating parameters (dilution rate) and environmental (degree of phosphorus limitation). The scientific objective was to improve knowledge on the role of phosphorus limitation according to the operating conditions of the process, first about the nature of selected strains, and then about the cellular growth and PHB accumulation. For this, an approach involving identification of microorganisms by pyrosequencing method, a kinetic characterization of selected microorganisms, a process analysis and development of a kinetic modeling were performed. The ultimate goal of the work was the optimization of PHB production processes in non-axenic culture: productivity, yield, final PHB concentration but also reliability and robustness, to define an optimal production strategy of PHA. The performance achieved during the fed-batch cultures are among the best in the literature (70% PHA) in mixed cultures without enrichment step of PHA producers. The results showed the role of phosphorus limitation on the PHB production. Thus, it has been demonstrated the importance of degree of phosphorus limitation to maintain cell growth allowing enrichment in PHA producers explaining the high content of PHA obtained. From microbial selections in chemostat culture, the analysis of macro-kinetic parameters revealed conversion kinetics of the carbon substrate in PHB, catalytic biomass and CO2, dependent on the degree of phosphorus limitation and growth rate. The limits on the degree of plasticity of the intracellular phosphorus (ranging from 3.8% to 0.045%) were identified as a function of the specific growth rate. This intracellular phosphorus content (depending on the growth rate and degree of phosphorus limitation), is the parameter governing carbon conversion. Furthermore, this role of the intracellular phosphorus was observed for all populations selected under phosphorus limitation in this study, demonstrating a universal behavior of these populations face to phosphorus limitation. In parallel, dynamic studies in batch reactor from these selected populations were used to characterize the kinetic parameters of the strains, showing a maximum PHB production rate of 0.6 and 1.2 Cmol/Cmol.h with acetic acid and butyric respectively. These hypotheses made from experimental observations allowed the establishment of a new kinetic model based on the role of intracellular phosphorus on carbon conversion. The comparison of this model with experimental results has strengthened and improved the understanding of the mechanisms of intracellular phosphorus dilution and storage PHB. This model was also used to explore a wide range of environmental conditions and predict microbial behavior of PHA producers and non-producing organisms according to the operating conditions in continuous or batch reactor. From the results observed and the established kinetic model, the performance of PHA production processes of different configurations was discussed: chemostat single or two-stage, fed-batch, chemostat plus batch... The productivities, intracellular PHB content, performances of selection and the reliability of the process are compared.
4

Impact des facteurs biotiques sur le réseau métabolique des écosystèmes producteurs d’hydrogène par voie fermentaire en culture mixte / Impact of biotic factors on the metabolic network of fermentative hydrogen-producing ecosystems in mixed culture

Rafrafi, Yan 28 June 2012 (has links)
De nos jours, les cultures mixtes sont considérées comme une sérieuse alternative aux cultures pures pour les procédés de biotechnologie. En effet, les cultures mixtes peuvent fonctionner en réacteur continu, dans des conditions non-stériles et traiter une grande variété de substrats organiques. La principale restriction de l'utilisation de ces bioprocédés en cultures mixtes réside dans leur instabilité liée à la présence de voies métaboliques non désirées résultant d'interactions microbiennes complexes. Notamment, le rôle des bactéries de faible abondance reste à être élucidé. Ce travail a donc consisté, dans un premier temps à déterminer le rôle des bactéries minoritaires dans la production d'hydrogène par voie fermentaire en utilisant un chémostat alimenté en continu avec un milieu à base de glucose. Sept inocula ont été cultivés dans les mêmes conditions opératoires. De façon remarquable, Clostridium pasteurianum a été retrouvé comme espèce dominante de l'écosystème six fois sur sept. Seules la nature et la diversité des espèces minoritaires variaient d'un écosystème à l'autre. Ainsi, il a été montré que la structure des communautés microbiennes a une influence significative sur la production de bio-hydrogène. Au sein de ces communautés, les bactéries en proportion minoritaires jouent un rôle clé en orientant le métabolisme globale de l'écosystème. La deuxième étape de ce travail a consisté à utiliser certaines de ces espèces minoritaires comme Ingénieurs Ecologiques des Ecosystèmes microbiens (IEEM). Pour cela, la structure d'une communauté microbienne productrice d'hydrogène a été modifiée artificiellement en introduisant des souches bactériennes exogènes aux fonctions redondantes et/ou complémentaires des souches indigènes. Les résultats en réacteur batch ont montré que les performances de production d'hydrogène pouvaient être améliorées jusqu'à un facteur 3,5 par l'ajout de certaines souches. Dans l'ensemble, les résultats obtenus ne peuvent être expliqués par de simples interactions trophiques et suggèrent la présence de mécanismes d'interactions de coopération entre microorganismes. De plus, sous des conditions opératoires plus favorables (inoculum, milieu), l'insertion de certaines espèces minoritaires a permis plutôt de stabiliser le métabolisme de l'écosystème microbien sans pour autant en affecter favorablement la production d'hydrogène. Dans tous les cas, les interactions compétitives n'ont pas été favorables à la production d'hydrogène. Enfin, des essais en réacteur continu ont montré que le mode d'implantation des souches peut être un facteur primordial pour l'utilisation d'IEEM. En conclusion, ce travail a montré la potentialité d'utiliser des bactéries exogènes, en proportions minoritaires, comme facteurs biotiques pour stabiliser et/ou orienter les métabolismes microbiens vers des fonctions d'intérêt au sein des cultures mixtes microbiennes. / Nowadays mixed cultures are considered as a serious alternative to pure cultures in biotechnological processes. Mixed cultures can be operated continuously, under unsterile conditions and from various organic substrates. One of the most constraints remains the chronic instability of the mixed culture processes due to the presence of unwanted metabolic pathways resulting from complex microbial interactions. More particularly the role of bacteria in low abundance remains to be elucidated. Therefore this work consisted initially to determine the contribution of sub-dominant bacteria to fermentative hydrogen production using a chemostat continuously fed with a glucose-based medium. Seven inocula were grown under the same operating conditions. Interestingly, Clostridium pasteurianum was found as dominant in six assays on seven at steady state. Only the minority bacterial population differed with regards to their identity and diversity. Acting as true keystone species, these minority bacteria impacted substantially the metabolic network of the overall ecosystem despite their low abundance. In a second step, this work consisted in using some of these minority species as Ecological Engineers of Microbial Ecosystem (EEME). In order to study this aspect, the structure of a hydrogen-producing microbial community has been artificially modified by adding exogenous bacterial strains with redundant functions and/or complementary native strains. Results in batch reactors have shown that the hydrogen production performances could be improved to a 3.5 factor by the addition of certain strains. Results obtained can not be explained by simple trophic interactions and suggest the presence of interaction mechanism of cooperation among microorganisms. Moreover, under more favourable operating conditions (inoculum, culture medium), the addition of certain species in low abundance could stabilize the metabolism of microbial ecosystem without necessarily favourably affect the hydrogen production. In all cases, competitive interactions were not favourable for hydrogen production. Trials were then realised in continuous reactors. These trials have shown that the method used to implant strains in reactors could be a key factor for using the EEME.As a conclusion, this study has shown the potential to use exogenous bacteria, in minority proportions, as biotic factors to stabilised and/or guides microbial metabolisms to functions of interest within microbial mixed cultures.
5

Étude des interactions entre bactéries lactiques œnologiques Œnococcus œni. Analyses cinétiques et modélisation / Study of interactions between œnological lactic acid bacteria Œnococcus œni. Kinetic analysis and modeling

Fahimi, Noura 29 February 2012 (has links)
La Fermentation Malo-Lactique (FML) réalisée par OEnococcus oeni est une étape importante de la vinification qui doit être maîtrisée. Bien que les vinificateurs aient à leur disposition des souches OE. oeni selectionnees la FML n’est pas toujours réussie. Les conditions physico-chimiques (pH, éthanol, température), la composition du vin et les facteurs biologiques influencent l’activite de cette bacterie ; parmi ces dernières les interactions entre micro-organismes sont primordiales. Souvent, après la fermentation alcoolique par la levure, des souches indigenes d’OE. oeni sont naturellement présentes dans le vin. Des interactions négatives peuvent alors se produire entre les souches autochtones et les souches sélectionnées apportées. Des connaissances sur ces interactions sont donc necessaires. L’objectif de ce travail etait d’etudier les interactions pendant la FML entre 5 souches d’OEnococcus oeni issues de différentes niches écologiques. Pour cela, des expériences ont été effectuées dans du milieu MRS modifié et dans des conditions proches à celles du vin (20 °C ; pH 3,5 et 10 % d’ethanol). Nous avons tout d’abord caracterise le comportement des souches en cultures pures à la fois dans les conditions de micro-aerobie et d’anaerobiose. Une grande variabilité a été retrouvée entre les souches dans les 2 conditions : trois des 5 souches sont favorisées en conditions d’anaerobiose tandis que les deux autres se sont mieux développées en conditions de micro-aérobie. La présence de 4 g.L-1 d’acide L-malique dans le milieu permet de produire, pour toutes les souches, une biomasse environ 2 fois plus élevée que celle obtenue dans le milieu sans acide L-malique. La totalite de l’acide malique est consommee par les 5 souches mais avec des vitesses différentes. Pour une souche donnée la vitesse spécifique de consommation d’acide L-malique (ν) et la vitesse specifique de croissance (μ) presentent des profils similaires au cours de la FML. Elles ont été reliées par un modèle mathématique qui a permis de quantifier ce lien pour chaque souche. Les interactions lors des cultures mixtes des 10 couples formés par les 5 souches ont ensuite été étudiées dans un Bio-Réacteur à Membrane (BRM) en anaérobiose. Trois catégories ont été mises en évidence: interactions à effets négatifs réciproques sur la croissance des 2 souches en culture mixte ; interactions à effet négatif sur la croissance de la souche la plus rapide en culture pure et à effet positif sur la croissance de la souche la plus lente en culture pure et interactions à effets positifs sur la souche la plus rapide en culture pure. La comparaison des cultures pures et mixtes a révélé que l’activite specifique de croissance des souches est affectee en culture mixte, ce qui provoque le prolongement de la phase de la latence dans le cas de l’inhibition et son raccourcissement dans le cas de la stimulation. La modelisation de la consommation d’acide L-malique a révélé pour certains couples une activation de la consommation de cet acide bien que la croissance soit fortement inhibée. Ces interactions, qui affectent le déroulement de la FML, ne peuvent etre dues qu’a l’effet de metabolite(s) extracellulaire(s) excretee(s) dans le milieu de fermentation. Ces métabolites restent à identifier. / In winemaking, the control of malolactic fermentation (MLF) by OEnococcus oeni is an essential step for this process. Although winemakers have the availability for selected OE.oeni strains, the MLF is not always successful. The physical-chemical conditions (pH, ethanol, and temperature), the composition of wine, and biological factors, all together influence the activity of this bacterium; regarding biological factors, the interactions between microorganisms are essential. Often, after alcoholic fermentation by yeast, indigenous strains of OE.oeni are naturally present in wine, negative interactions can then occur between the indigenous strains and selected strains; therefore, knowledge on these interactions is needed. The goal of the present work was to study the interactions during MLF between five strains of OE.oeni from different origins. Experiments were performed in the modified MRS medium to be in nearly conditions to those of wine (20 °C, pH 3.5, and 10% ethanol). The characterization of the behavior of strains in pure cultures was done under both, micro-aerobic and anaerobic conditions; a large variability was found between the strains in the two conditions: three out of five strains were favored under anaerobic conditions while the two others were better developed in micro-aerobic conditions. The presence of 4 g.L-1 of L-malic acid in the culture medium increased the biomass produced, about two-fold higher than that obtained in medium without L-malic acid. All of the L-malic acid is consumed by the five strains but at different specific rates. A mathematical model allowed to quantifying the relationship between the specific consumption rate of L-malic acid (ν) and the specific growth rate two specific rates for each strain; for a given strain, both rates have similar profiles during the MLF. Interactions in mixed cultures of 10 couples formed by the five strains were then examined in a Membrane Bioreactor (BRM) under anaerobic conditions. Three different interaction types were identified: 1) negative reciprocal interactions of the both strains in mixture culture, 2) interaction that affect negatively the favored strain in pure culture and positively the slowest one, and 3) interaction with positive effect on the fastest strain in pure culture. Comparison of pure and mixed culture showed that the specific activity of strains was affected in mixture culture causing the extension of the lag phase in the case of inhibition and its shortcut in the case of stimulation. Modeling of the consumption of the L-malic acid revealed activation of the consumption of this acid for some couples however, growth is strongly affected. The interactions affecting the course of the MLF are due solely to the effect of excreted extracellular metabolite(s); these metabolites remain to be identified
6

Production d’hydrogène par fermentation obscure : intensification du procédé par extraction des gaz et développement d’un bioréacteur à membrane / Hydrogen production by dark fermentation : intensification of the process by gas extraction and development on a membrane bioreactor

Clion, Valentin 29 September 2016 (has links)
Dans le contexte du développement de l’hydrogène-énergie, de nouvelles voies de production renouvelables sont étudiées, parmi lesquelles la fermentation obscure est un processus biologique convertissant la biomasse. Dans cette étude, ce procédé a été optimisé en réacteur agité semibatch par la sélection de cultures mixtes (boues de station d’épuration) et l’optimisation des paramètres de fermentation associés (température, ajout de substrat, régulation du pH). La présence majoritaire de bactéries du genre Clostridium a été observée dans le milieu fermentaire. Différents modes d’extraction des gaz produits ont été évalués, permettant d’intensifier le procédé par l’utilisation d’un gaz de balayage (N2 ou CO2). La mise en œuvre efficace en fonctionnement continu d’un bioréacteur membranaire dans une configuration d’extraction gaz/liquide a permis d’améliorer le rendement (> + 90%) et la productivité en H2 (> + 300%) par rapport au mode de fonctionnement continu en réacteur agité. Enfin, l’utilisation d’un substrat réel (bourbes viticoles) a permis de prouver la faisabilité du procédé dans une perspective d’industrialisation. / In the context of the development of hydrogen-energy, new renewable production ways are studied, among which dark fermentation is a biological process converting the biomass. In this study, this process was optimized for a semibatch reactor by the selection of mixed cultures (waste water treatment plant sludges) and the optimization of associated parameters of fermentation (temperature, add of substrate, pH regulation). The presence in majority of bacteria from the genus Clostridium was observed in the fermentation broth. Different extraction modes of the produced gas were evaluated, allowing to intensify the process by the use of a sparging gas (N2 or CO2). The successful implementation in continuous mode of a membrane bioreactor in a configuration of gas/liquid extraction allowed an increase in H2 yield (> + 90%) and productivity (> + 300%) compared to the continuous stirred tank reactor. Finally, the use of a real substrate (winery waste) allowed to prove the feasibility of this process in the prospect of industrialization.

Page generated in 0.053 seconds