• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding Antarctic Circumpolar Current Transport at the LGM Using an Isotope-enabled Ocean Model

Li, Lingwei 28 August 2019 (has links)
No description available.
2

Properties Of Light Emitting Diodes Following Cobalt-60 Irradiation

Ozcan, Safak 01 September 2004 (has links) (PDF)
PROPERTIES OF LIGHT EMITTING DIODES FOLLOWING COBALT-60 IRRADIATION &Ouml / zcan, Safak M.S., Department of Physics Supervisor: Prof. Dr. ibrahim G&uuml / nal September 2004, 71 pages The main purpose of this study is to investigate the effects of gamma radiation on the properties of the light emitting diodes. GaP and GaAsP LEDs are used in the study. It is observed that the exposure of a light emitting diode affects its various properties. A cobalt-60 gamma-cell is used to irradiate the selected light emitting diodes. For the different total doses of gamma pre-irradiation and post-irradiation I-V characteristics and spectral responses are recorded. The capacitance characteristics are measured at 1MHz at room temperature. Gamma ray bombardment of these LEDs results in reduction of electroluminescent intensity and increase in forward current up to levels tested. In GaP diodes dominant current transport mechanism has found to be effected by irradiation. No noticeable change is observed in the series resistances. The impurity density remains same in the green LED and increases in the red one due to the irradiation, which is deduced from the C-V characteristics. Both the circuit designers and the users should be aware of these effects in order to reach a reliable application for these components in a radiation environment.
3

Paleocurrent Analysis of the Upper Miocene Formation, Los Angeles Basin, California

Bennett, John Newton, Jr. January 1967 (has links)
Almost all sandstone beds occurring in the Upper Miocene formations at the Los Angeles basin were deposited by turbidity currents. Primary textures and structures indicative of turbidites occur in fair abundance throughout all three Upper Miocene formations. All accessible outcrops of the Puente, Modelo, and Upper Miocene portion of the Monterey and Capistrano Formations were scrutinized for sandstone beds containing primary sedimentary structures. Through study of these structures, the direction of current movement was determined. The pattern of current movement displayed reveals that sediment was being transported into the Los Angeles basin from all sides. Current directions and mineralogic studies indicate that essentially three source areas were supplying sediment into the basin. These source areas are 1) the San Gabriel Mountains, 2) an area to the east of the Santa Ana Mountains, and 3) a ridge of metamorphic rock paralleling the present coast line. The majority of sediment was derived from an area in the San Gabriel Mountains located northeast or the basin. This is evidenced by the fact that the thickness, grain size, and total sand content of the Upper Miocene units decrease southwestward across the basin.
4

Electrical characterization of ZnO and metal ZnO contacts

Mtangi, Wilbert 11 February 2010 (has links)
The electrical properties of ZnO and contacts to ZnO have been investigated using different techniques. Temperature dependent Hall (TDH) effect measurements have been used to characterize the as-received melt grown ZnO samples in the 20 – 330 K temperature range. The effect of argon annealing on hydrogen peroxide treated ZnO samples has been investigated in the 200 – 800oC temperature range by the TDH effect measurement technique. The experimental data has been analysed by fitting a theoretical model written in Matlab to the data. Donor concentrations and acceptor concentrations together with the associated energy levels have been extracted by fitting the models to the experimentally obtained carrier concentration data by assuming a multi-donor and single charged acceptor in solving the charge balance equation. TDH measurements have revealed the dominance of surface conduction in melt grown ZnO in the 20 – 40 K temperature range. Surface conduction effects have proved to increase with the increase in annealing temperature. Surface donor volume concentrations have been determined in the 200 – 800oC by use of theory developed by D. C. Look. Good rectifying Schottky contacts have been fabricated on ZnO after treating the samples with boiling hydrogen peroxide. Electrical properties of these Schottky contacts have been investigated using current-voltage (IV) and capacitance-voltage (CV) measurements in the 60 – 300 K temperature range. The Schottky contacts have revealed the dominance of predominantly thermionic emission at room temperature and the existence of other current transport mechanisms at temperatures below room temperature. Polarity effects on the Schottky contacts deposited on the O-polar and Zn-polar faces of ZnO have been demonstrated by the IV technique on the Pd and Au Schottky contacts at room temperature. Results obtained indicate a strong dependence of the Schottky contact quality on the polarity of the samples at room temperature. The quality of the Schottky contacts have also indicated their dependence on the type of metal used with the Pd producing contacts with the better quality as compared to the Au. Schottky barrier heights determined using temperature dependent IV measurements have been observed to increase with increasing temperature and this has been explained as an effect of barrier inhomogeneities, while the ones obtained from CV measurements have proved to follow the negative temperature coefficient of the II – VI semiconductor material, i.e. a decrease in barrier height with increasing temperature. However, the values have proved to be larger than the energy gap of ZnO, an effect that has been explained as caused by an inversion layer. Copyright / Dissertation (MSc)--University of Pretoria, 2010. / Physics / unrestricted

Page generated in 0.0969 seconds