11 |
Analytic and geometric aspects of spacetimes of low regularity / Aspects analytiques et géométriques d'espaces-temps de faible régularitéBurtscher, Annegret Yvonne 13 January 2014 (has links)
La théorie de la relativité générale décrit l'effet de la gravitation en termes de géométrie des espaces-temps. La courbure des variétés lorentzienne est liée à l'énergie et l'évolution de la matière (ou du vide) par les équations d'Einstein, un système d'équations différentielles non-linéaires. Dans les années 1950, l'existence locale de solutions des équations d'Einstein a été établie. Motivé par ce résultat, j'étudie l'évolution ainsi que la régularité des espaces-temps. Il est démontré que certaines estimations d'énergie peuvent être contrôlées par des limites unilatérales portant uniquement sur la géométrie. Les estimations de l'énergie Bel-Robinson, par exemple, sont indispensables pour le calcul des critères d'effondrement pour les solutions des équations d'Einstein. Comme un important espace-temps, des modèles astrophysiques avec des sources de fluides parfaits sont considérés. Une théorie d'existence de solutions à symétrie sphérique pour l'équations Einstein-Euler est présenté et on identifie une classe de données initiales non-piégées qui conduit à la formation dynamique de surfaces piégées. Pour permettre des ondes de choc, des solutions à variation bornée sont considérées. Dans ce cadre de là et dans d'autres domaines de la relativité générale, il est crucial de comprendre si et comment la régularité des métriques influe sur la géométrie des espaces-temps. Je propose aussi quelques résultats généraux sur les métriques riemanniennes continues et sur l'algèbre des fonctions généralisées. Cette thèse montre donc que l'espace-temps de faible régularité présentent un large éventail de phénomènes intéressants au cours de leur évolution. / The general theory of relativity describes the effect of gravitation in terms of the geometry of spacetimes. The curvature of Lorentzian manifolds is related to the energy and momentum of matter (or vacuum) by the Einstein equations, a system of nonlinear partial differential equations. In the 1950s the initial value formulation and local existence of solutions to the Einstein equations were established. As of yet the global structure of spacetimes is much less understood. Motivated by this I investigate the evolution as well as the regularity of spacetimes. I show that certain energy estimates can be controlled by one-sided bounds on the geometry only. Estimates of the Bel-Robinson energy, for example, play a crucial role in the derivation of breakdown criteria for solutions of the vacuum Einstein equations. As an important astrophysical model spacetimes with perfect fluid sources are considered. An existence theory for spherically symmetric solutions to the Einstein-Euler equations is presented, and, above all, I identify for the first time a class of untrapped initial data that leads to the dynamical formation of trapped surfaces. To allow for shock waves, solutions are regarded to be of bounded variation. The distributional framework is essential here and in other areas of general relativity, and it is crucial to understand if and how the regularity of metrics influences the geometry of spacetimes. I account for this by deriving some general results on continuous Riemannian metrics and algebras of generalized functions. This thesis thus illustrates that spacetimes of low regularity exhibit a wide range of interesting phenomena during their evolution.
|
12 |
Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation TheoryEltzner, Benjamin 16 July 2013 (has links) (PDF)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated. / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.
|
13 |
Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for different Inflationary ModelsDresti, Simone 23 May 2018 (has links)
No description available.
|
14 |
Quantum structure of holographic black holes / Kvantstruktur hos holografiska svarta hålRiedel Gårding, Elias January 2020 (has links)
We study a free quantum scalar field in the BTZ spacetime as a model of the AdS/CFT correspondence for black holes, and show the essential steps in computing Bogolyubov coefficients between modes on either side of the wormhole. As background, we review the BTZ geometry in standard, Kruskal and Poincaré coordinates, holographic renormalisation of the dual field theory and canonical quantisation in curved spacetime. / Vi studerar ett fritt skalärt kvantfält i BTZ-rumtiden som en modell av AdS/CFT-dualiteten för svarta hål och visar huvudstegen i beräkningen av Bogolyubov-koefficienter mellan moder på olika sidor av maskhålet. Som bakgrund redogör vi för BTZ-geometrin i standard-, Kruskal- och Poincarékoordinater, holografisk renormering av den duala fältteorin och kanonisk kvantisering i krökt rumtid.
|
15 |
Negative frequency at the horizon : scattering of light at a refractive index frontJacquet, Maxime J. January 2017 (has links)
This thesis considers the problem of calculating and observing the mixing of modes of positive and negative frequency in inhomogeneous, dispersive media. Scattering of vacuum modes of the electromagnetic field at a moving interface in the refractive index of a dielectric medium is discussed. Kinematics arguments are used to demonstrate that this interface may, in a regime of linear dispersion, act as the analogue of the event horizon of a black hole to modes of the field. Furthermore, a study of the dispersion of the dielectric shows that five distinct configurations of modes of the inhomogeneous medium at the interface exist as a function of frequency. Thus it is shown that the interface is simultaneously a black- and white-hole horizon-like and horizonless emitter. The role, and importance, of negative-frequency modes of the field in mode conversion at the horizon is established and yields a calculation of the spontaneous photonic flux at the interface. An algorithm to calculate the scattering of vacuum modes at the interface is introduced. Spectra of the photonic flux in the moving and laboratory frame, for all modes and all realisable increase in the refractive index at the interface are computed. As a result of the various mode configurations, the spectra are highly structured in intervals with black-hole, white-hole and no horizon. The spectra are dominated by a negative-frequency mode, which is the partner in any Hawking-type emission. An experiment in which an incoming positive-frequency wave is populated with photons is assembled to observe the transfer of energy to outgoing waves of positive and negative frequency at the horizon. The effect of mode conversion at the interface is clearly shown to be a feature of horizon physics. This is a classical version of the quantum experiment that aims at validating the mechanism of Hawking radiation.
|
16 |
Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation TheoryEltzner, Benjamin 29 May 2013 (has links)
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155 / In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft.:1. Introduction 5
2. Technical Background 10
2.1. The Free Scalar Field on a Globally Hyperbolic Spacetime . . . . . . 10
2.1.1. Construction of the Scalar Field . . . . . . . . . . . . . . . . . 10
2.1.2. Algebra of Wick Products . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Local Covariance Principle . . . . . . . . . . . . . . . . . . . . 17
2.2. Local Thermal Equilibirum . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1. Global Thermodynamic Equilibrium - KMS States . . . . . . 21
2.2.2. Local Thermal Observables . . . . . . . . . . . . . . . . . . . 24
2.2.3. LTE on Flat Spacetime . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. LTE in Cosmological Spacetimes . . . . . . . . . . . . . . . . 32
2.3. Linear Scalar Cosmological Perturbations . . . . . . . . . . . . . . . . 34
2.3.1. Robertson-Walker Cosmology . . . . . . . . . . . . . . . . . . 35
2.3.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . 38
2.3.3. Technical Framework and Formulae . . . . . . . . . . . . . . . 40
2.3.4. The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 46
2.3.5. The Sachs-Wolfe Effect for Adiabatic Perturbations . . . . . . 49
3. Towards a Refinement of the LTE Condition on Curved Spacetimes 54
3.1. Non-Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1. Commutator Distribution . . . . . . . . . . . . . . . . . . . . 55
3.1.2. KMS Two-Point Function . . . . . . . . . . . . . . . . . . . . 57
3.1.3. Balanced Derivatives . . . . . . . . . . . . . . . . . . . . . . . 61
3.2. Conformally Static Spacetimes . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Conformal KMS States . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2. Extrinsic LTE in de Sitter Spacetime . . . . . . . . . . . . . . 71
3.3. Massive Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1. Properties of the Model . . . . . . . . . . . . . . . . . . . . . 78
3.3.2. Bogoliubov Transformation . . . . . . . . . . . . . . . . . . . 80
3.3.3. Thermal Observables . . . . . . . . . . . . . . . . . . . . . . . 82
3.4. Towards an Alternative Concept . . . . . . . . . . . . . . . . . . . . . 91
3.4.1. Problems and Open Questions Concerning LTE . . . . . . . . 92
3.4.2. Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3. Positivity Inequalities . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.4. Macroobservable Interpretation . . . . . . . . . . . . . . . . . 100
3.5. An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4. Cosmological Perturbation Theory 105
4.1. Dynamics of Perturbations in Inflation . . . . . . . . . . . . . . . . . 106
4.1.1. CCR Quantisation is Ambiguous . . . . . . . . . . . . . . . . 106
4.1.2. Canonical Symplectic Form . . . . . . . . . . . . . . . . . . . 111
4.1.3. The Algebraic Point of View . . . . . . . . . . . . . . . . . . . 117
4.2. LTE States in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.1. The Link to Fluid Dynamics . . . . . . . . . . . . . . . . . . . 120
4.2.2. Incompatibility of LTE with Sachs-Wolfe Effect . . . . . . . . 125
5. Conclusion and Outlook 131
A. Technical proofs 136
A.1. Proof of Lemma 3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.2. Proof of Lemma 3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3. Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.4. Idea of Proof for Conjecture 3.4.3 . . . . . . . . . . . . . . . . . . . . 144
B. Introduction to Probability Theory 146
Bibliography 150
Correction of Lemma 3.1.2 155
|
17 |
Fases geométricas, quantização de Landau e computação quâantica holonômica para partículas neutras na presença de defeitos topológicosBakke Filho, Knut 06 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:14:06Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1577961 bytes, checksum: c71d976d783495df566e0fa6baadf8ca (MD5)
Previous issue date: 2009-08-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We start this work studying the appearance of geometric quantum phases as in the relativistic
as in the non-relativistic quantum dynamics of a neutral particle with permanent
magnetic and electric dipole moment which interacts with external electric and magnetic
fields in the presence of linear topological defects. We describe the linear topological
defects using the approach proposed by Katanaev and Volovich, where the topological
defects in solids are described by line elements which are solutions of the Einstein's equations
in the context of general relativity. We also analyze the in
uence of non-inertial
effects in the quantum dynamics of a neutral particle using two distinct reference frames
for the observers: one is the Fermi-Walker reference frame and another is a rotating frame.
As a result, we shall see that the difference between these two reference frames is in the
presence/absence of dragging effects of the spacetime which makes its in
uence on the
phase shift of the wave function of the neutral particle. In the following, we shall use our
study of geometric quantum phases to make an application on the Holonomic Quantum
Computation, where we shall show a new approach to implement the Holonomic Quantum
Computation via the interaction between the dipole moments of the neutral particle
and external fields and the presence of linear topological defects. Another applications for
the Holonomic Quantum Computation is based in the structure of the topological defects
in graphene layers. In the presence of topological defects, a graphene layer shows two
distinct phase shifts: one comes from the mix of Fermi points while the other phase shift
comes from the topology of the defect. To provide a geometric description for each phase
shift in the graphene layer, we use the Kaluza-Klein theory where we establish that the
extra dimension describes the Fermi points in the graphene layer. Hence, we can implement
the Holonomic Quantum Computation through the possibility to build cones and
anticones of graphite in such way we can control the quantum
uxes in graphene layers.
In the last part of this work, we study the Landau quantization for neutral particles as in
the relativistic dynamics and non-relativistic dynamics. In the non-relativistic dynamics,
we study the Landau quantization in the presence of topological defects as in an inertial
as in a non-inertial reference frame. In the relativistic quantum dynamics, we start our
study with the Landau quantization in the Minkowisky considering two different gauge
fields. At the end, we study the relativistic Landau quantization for neutral particles in
the Cosmic Dislocation spacetime. / Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de
dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos
na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos
lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein
no contexto da relatividade geral. Analisamos também a
inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para
os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante.
Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto
do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de
onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para
fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos
de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra
aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos
topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares,
esse material apresenta duas fases quânticas de origens distintas: uma da mistura
dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade
de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos
quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau
para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença
de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na
dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo
plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de
Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.
|
Page generated in 0.037 seconds