• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 79
  • 27
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Sécurisation de capteurs/actionneurs sur réseau industriel / Actuator Sensor Securing over Industrial Network

Toublanc, Thomas 18 December 2018 (has links)
De nos jours, les systèmes de production sont confrontés à leur 4e révolution. Celle-ci est numérique avec des réseaux toujours plus denses et complexes s’ouvrant sur l’extérieur. Cette ouverture rend ces systèmes plus vulnérables. Les menaces sur ces Systèmes Cyber-Physiques de Production (SCPP) ne sont plus seulement théoriques. L’attaque sur l’aciérie allemande ou le cryptovirus Wannacry en sont de parfaits exemples. Ce travail propose un outil contribuant à la sécurité des SCPP. Nos contributions sont triples : La conception d'un Système de Détection et Réaction aux Anomalies (SDRA) placé sur le réseau de terrain. Celui-ci intègre des méthodes de détection comportementales et informationnelles. Il comprend également des capacités de réaction à la fois passives, mettant en œuvre de la remontée d'information vers l'humain ou vers des systèmes de niveaux supérieurs, et actives intégrant du filtrage d'ordre ou de la mise en repli. L'application des méthodes proposées entraîne naturellement un effort de conception supplémentaire qui doit être réduit. Nous avons donc mis au point une démarche permettant d’assister les concepteurs pour la configuration de notre SDRA. Cette dernière se base sur une approche hybride (composant/opération) et étend un flot de conception existant. Plusieurs transformations raffinent des vues surveillance/supervision des composants alors que d’autres génèrent la configuration du SDRA. Une troisième contribution propose un démonstrateur réaliste basé sur un environnement virtuel de test. Ce dernier intègre la simulation conjointe de la partie opérative et de la partie commande et permet de montrer les qualités fonctionnelles des solutions face à des scénarios d’attaque ou de défaillance. / Today, production systems are facing their 4th revolution. This revolution is digital with increasingly dense and complex networks opening on the outside. This openness makes these systems more vulnerable. The threats on these Cyber-Physical Production Systems (CPPS) are no longer just theoretical. The attacks on the German steel mill or the Wannacry crypto virus are perfect examples. This work proposes a tool contributing to the security of the SCPP. Our contributions are threefold: The design of an Anomaly Detection and Response System (ADRS) placed on the field network. It integrates behavioral and informational detection methods. It also includes passive response capabilities, implementing feedback to the human or to higher level systems, and active integrating order filtering or fallback. The application of the proposed methods naturally entails an additional design effort which must be reduced. We have therefore developed an approach to assist designers in the configuration of our ADRS. It is based on a hybrid approach (component / operation) and extends an existing design flow. Several transformations refine monitoring / supervision views of the components while others generate the configuration of the ADRS. A third contribution proposes a realistic demonstrator based on a virtual test environment. It integrates the joint simulation of the operative part and the control part and makes it possible to show the functional qualities of the solutions in the face of attack or failure scenarios.
32

Metodologia de modelagem e arquitetura de referência do Digital Twin em sistemas ciber físicos industriais usando AutomationML

Schroeder, Greyce Nogueira January 2018 (has links)
Com as evoluções tecnológicas nas áreas de hardware, microeletrônica, sistemas de informação e computação, o conceito de sistemas ciberfísicos (do inglês Cyber-Physical Systems) vem ganhando importância. Este sistemas se referem à junção entre sistemas computacionais distribuídos e processos físicos da natureza e, são base fundamental para a nova revolução industrial que esta sendo introduzida. Esta revolução industrial é marcada pela completa descentralização do controle dos processos produtivos e uma proliferação de dispositivos inteligentes interconectados, ao longo de toda a cadeia de produção e logística. Sistemas de automação, e particularmente os sistemas de automação industrial, nos quais elementos computacionais controlam e automatizam a execução de processos físicos em plantas industriais, são um exemplo de sistemas ciber-físicos. Com isso, percebe-se que é necessário relacionar objetos físicos a informações associadas a este objeto no mundo cibernético. Para isso, destaca-se o conceito e o uso do Digital Twin, que é uma representação virtual de objetos físicos. O Digital Twin possibilita a virtualização e centralização do controle no produto. Este estudo irá explorar uma metodologia de modelagem genérica e flexível para o Digital Twin usando a ferramenta AutomationML e propor uma arquitetura de comunicação para a troca de dados sob a ótica de Cyber Physical Systems. Com a implementação dessa metodologia, pretende-se validar o conceito proposto e oferecer um método de modelagem e configuração para obter dados, extrair conhecimento e proporcionar sistemas de visualização para os usuários. / With technological advances in the fields of hardware, microelectronics and computer systems, Cyber Physical Systems is a new concept that is gaining importance. This systems are integrations of computation, networking, and physical processes. Cyber Physical Systems are one of the pillars for the new industrial revolution, and it is marked by the complete decentralization of the control of production processes and, marked by a proliferation of interconnected intelligent devices throughout the production and logistics chain. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. A industrial automation system, is an example of cyber physical systems where computational elements control and automate the execution of physical processes in industrial plants. Thus, it is clear the need to relate physical objects to information associated with this object in the cyber world. For this, this work pretends to use the concept of Digital Twin, that is a virtual representation of physical objects. Digital Twin enables the virtualization of physical components and descentralization of control. This study will explore a generic and flexible modeling methodology for Digital Twin using the AutomationML tool. Also this work proposes a communication architecture for the exchange of data from the perspective of Cyber Physical Systems. With the implementation of this methodology, we intend to validate the proposed concept and offer a modeling and configuration method to obtain data, extract knowledge and provide visualization systems for users.
33

Coordinated Variable Structure Switching Attacks for Smart Grid

Liu, Shan 02 October 2013 (has links)
The effective modeling and analysis of large-scale power system disturbances especially those stemming from intentional attack represents an open engineering and research problem. Challenges stem from the need to develop intelligent models of cyber-physical attacks that produce salient disruptions and appropriately describe meaningful cyber-physical interdependencies such that they balance precision, scale and complexity. In our research, we present a foundation for the development of a class of intelligent cyber-physical attacks termed coordinated variable structure switching attacks whereby opponents aim to destabilize the power grid through con- trolled switching sequence. Such switching is facilitated by cyber-attack and corruption of communication channels and control signals of the associated switch(es). We provide methods and theorems to construct such attack models and demonstrate their utility in the simulation of extensive system disturbances. Our proposed class of cyber-physical switching attacks for smart grid systems has the potential to disrupt large-scale power system operation within a short interval of time. Through successful cyber intrusion, an opponent can remotely apply a state- dependent coordinated switching sequence on one or more relays and circuit breakers of a power system to disrupt operation. Existence of this switching vulnerability is dependent on the local structure of the power grid. Variable structure systems theory is employed to effectively model the cyber-physical aspects of a smart grid and determine the existence of the vulnerability and construct the destabilizing switching attack sequence. We illustrate the utility of the attack approach assess its impact on the different power system test cases including the single machine infinite bus power system model and the Western Electricity Coordinating Council (WECC) 3-machine 9-bus system through MATLAB/Simulink and PSCAD simulation environment. The results demonstrate the potential of our approach for practical attack. Moreover, we build on our work in several ways. First, we extend the research to demonstrate an approach to mitigation within the variable structure system frame- work. We demonstrate via small signal analysis how through persistent switching a stable sliding mode can be used to disrupt a dynamical system that seems stable. We also design an approach to vulnerability analysis to assess the feasibility of co-ordinated variable structure switching attacks. Moreover, we study the performance of our attack construction approach when the opponent has imperfect knowledge of the local system dynamics and partial knowledge of the generator state. Based on the system with modeling errors, we study the performance of coordinated variable structure switching attacks in the presence of state estimation. Finally, we illustrate the concepts of attack model within the multiple switching framework, the cascading failure analysis is employed in the New-England 10-machine, 39-bus power system using MATLAB/Simulink and DSATools simulation environment. Our results demonstrate the potential for coordinated variable structure switching attacks to enable large-scale power system disturbances.
34

Metodologia de modelagem e arquitetura de referência do Digital Twin em sistemas ciber físicos industriais usando AutomationML

Schroeder, Greyce Nogueira January 2018 (has links)
Com as evoluções tecnológicas nas áreas de hardware, microeletrônica, sistemas de informação e computação, o conceito de sistemas ciberfísicos (do inglês Cyber-Physical Systems) vem ganhando importância. Este sistemas se referem à junção entre sistemas computacionais distribuídos e processos físicos da natureza e, são base fundamental para a nova revolução industrial que esta sendo introduzida. Esta revolução industrial é marcada pela completa descentralização do controle dos processos produtivos e uma proliferação de dispositivos inteligentes interconectados, ao longo de toda a cadeia de produção e logística. Sistemas de automação, e particularmente os sistemas de automação industrial, nos quais elementos computacionais controlam e automatizam a execução de processos físicos em plantas industriais, são um exemplo de sistemas ciber-físicos. Com isso, percebe-se que é necessário relacionar objetos físicos a informações associadas a este objeto no mundo cibernético. Para isso, destaca-se o conceito e o uso do Digital Twin, que é uma representação virtual de objetos físicos. O Digital Twin possibilita a virtualização e centralização do controle no produto. Este estudo irá explorar uma metodologia de modelagem genérica e flexível para o Digital Twin usando a ferramenta AutomationML e propor uma arquitetura de comunicação para a troca de dados sob a ótica de Cyber Physical Systems. Com a implementação dessa metodologia, pretende-se validar o conceito proposto e oferecer um método de modelagem e configuração para obter dados, extrair conhecimento e proporcionar sistemas de visualização para os usuários. / With technological advances in the fields of hardware, microelectronics and computer systems, Cyber Physical Systems is a new concept that is gaining importance. This systems are integrations of computation, networking, and physical processes. Cyber Physical Systems are one of the pillars for the new industrial revolution, and it is marked by the complete decentralization of the control of production processes and, marked by a proliferation of interconnected intelligent devices throughout the production and logistics chain. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. A industrial automation system, is an example of cyber physical systems where computational elements control and automate the execution of physical processes in industrial plants. Thus, it is clear the need to relate physical objects to information associated with this object in the cyber world. For this, this work pretends to use the concept of Digital Twin, that is a virtual representation of physical objects. Digital Twin enables the virtualization of physical components and descentralization of control. This study will explore a generic and flexible modeling methodology for Digital Twin using the AutomationML tool. Also this work proposes a communication architecture for the exchange of data from the perspective of Cyber Physical Systems. With the implementation of this methodology, we intend to validate the proposed concept and offer a modeling and configuration method to obtain data, extract knowledge and provide visualization systems for users.
35

From Algorithmic Computing to Autonomic Computing

13 February 2018 (has links) (PDF)
In algorithmic computing, the program follows a predefined set of rules – the algorithm. The analyst/designer of the program analyzes the intended tasks of the program, defines the rules for its expected behaviour and programs the implementation. The creators of algorithmic software must therefore foresee, identify and implement all possible cases for its behaviour in the future application! However, what if the problem is not fully defined? Or the environment is uncertain? What if situations are too complex to be predicted? Or the environment is changing dynamically? In many such cases algorithmic computing fails. In such situations, the software needs an additional degree of freedom: Autonomy! Autonomy allows software to adapt to partially defined problems, to uncertain or dynamically changing environments and to situations that are too complex to be predicted. As more and more applications – such as autonomous cars and planes, adaptive power grid management, survivable networks, and many more – fall into this category, a gradual switch from algorithmic computing to autonomic computing takes place. Autonomic computing has become an important software engineering discipline with a rich literature, an active research community, and a growing number of applications.
36

Metodologia de modelagem e arquitetura de referência do Digital Twin em sistemas ciber físicos industriais usando AutomationML

Schroeder, Greyce Nogueira January 2018 (has links)
Com as evoluções tecnológicas nas áreas de hardware, microeletrônica, sistemas de informação e computação, o conceito de sistemas ciberfísicos (do inglês Cyber-Physical Systems) vem ganhando importância. Este sistemas se referem à junção entre sistemas computacionais distribuídos e processos físicos da natureza e, são base fundamental para a nova revolução industrial que esta sendo introduzida. Esta revolução industrial é marcada pela completa descentralização do controle dos processos produtivos e uma proliferação de dispositivos inteligentes interconectados, ao longo de toda a cadeia de produção e logística. Sistemas de automação, e particularmente os sistemas de automação industrial, nos quais elementos computacionais controlam e automatizam a execução de processos físicos em plantas industriais, são um exemplo de sistemas ciber-físicos. Com isso, percebe-se que é necessário relacionar objetos físicos a informações associadas a este objeto no mundo cibernético. Para isso, destaca-se o conceito e o uso do Digital Twin, que é uma representação virtual de objetos físicos. O Digital Twin possibilita a virtualização e centralização do controle no produto. Este estudo irá explorar uma metodologia de modelagem genérica e flexível para o Digital Twin usando a ferramenta AutomationML e propor uma arquitetura de comunicação para a troca de dados sob a ótica de Cyber Physical Systems. Com a implementação dessa metodologia, pretende-se validar o conceito proposto e oferecer um método de modelagem e configuração para obter dados, extrair conhecimento e proporcionar sistemas de visualização para os usuários. / With technological advances in the fields of hardware, microelectronics and computer systems, Cyber Physical Systems is a new concept that is gaining importance. This systems are integrations of computation, networking, and physical processes. Cyber Physical Systems are one of the pillars for the new industrial revolution, and it is marked by the complete decentralization of the control of production processes and, marked by a proliferation of interconnected intelligent devices throughout the production and logistics chain. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. A industrial automation system, is an example of cyber physical systems where computational elements control and automate the execution of physical processes in industrial plants. Thus, it is clear the need to relate physical objects to information associated with this object in the cyber world. For this, this work pretends to use the concept of Digital Twin, that is a virtual representation of physical objects. Digital Twin enables the virtualization of physical components and descentralization of control. This study will explore a generic and flexible modeling methodology for Digital Twin using the AutomationML tool. Also this work proposes a communication architecture for the exchange of data from the perspective of Cyber Physical Systems. With the implementation of this methodology, we intend to validate the proposed concept and offer a modeling and configuration method to obtain data, extract knowledge and provide visualization systems for users.
37

Multi-agent estimation and control of cyber-physical systems

Alam, S. M. Shafiul January 1900 (has links)
Doctor of Philosophy / Electrical and Computer Engineering / Balasubramaniam Natarajan / A cyber-physical system (CPS) typically consists of networked computational elements that control physical processes. As an integral part of CPS, the widespread deployment of communicable sensors makes the task of monitoring and control quite challenging especially from the viewpoint of scalability and complexity. This research investigates two unique aspects of overcoming such barriers, making a CPS more robust against data explosion and network vulnerabilities. First, the correlated characteristics of high-resolution sensor data are exploited to significantly reduce the fused data volume. Specifically, spatial, temporal and spatiotemporal compressed sensing approaches are applied to sample the measurements in compressed form. Such aggregation can directly be used in centralized static state estimation even for a nonlinear system. This approach results in a remarkable reduction in communication overhead as well as memory/storage requirement. Secondly, an agent based architecture is proposed, where the communicable sensors (identified as agents) also perform local information processing. Based on the local and underdetermined observation space, each agent can monitor only a specific subset of global CPS states, necessitating neighborhood information exchange. In this framework, we propose an agent based static state estimation encompassing local consensus and least square solution. Necessary bounds for the consensus weights are obtained through the maximum eigenvalue based convergence analysis and are verified for a radial power distribution network. The agent based formulation is also applied for a linear dynamical system and the consensus approach is found to exhibit better and more robust performance compared to a diffusion filter. The agent based Kalman consensus filter (AKCF) is further investigated, when the agents can choose between measurements and/or consensus, allowing the economic allocation of sensing and communication tasks as well as the temporary omission of faulty agents. The filter stability is guaranteed by deriving necessary consensus bounds through Lyapunov stability analysis. The states dynamically estimated from AKCF can be used for state-feedback control in a model predictive fashion. The effect of lossy communication is investigated and critical bounds on the link failure rate and the degree of consensus that ensure stability of the agent based control are derived and verified via simulations.
38

Self-Configuring and Self-Adaptive Environment Control Systems for Buildings

January 2015 (has links)
abstract: Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system self calibrating and self learning abilities. For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting. For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control. The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2015
39

Sistema físico cibernético multiagente para monitoramento remoto de pacientes.

MARTINS, Aldenor Falcão. 04 May 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-05-04T17:30:47Z No. of bitstreams: 1 ALDENOR FALCÃO MARTINS – DISSERTAÇÃO (PPGEE) 2015.pdf: 15602466 bytes, checksum: 608173ca67ff68da8ae45b321aa82204 (MD5) / Made available in DSpace on 2018-05-04T17:30:47Z (GMT). No. of bitstreams: 1 ALDENOR FALCÃO MARTINS – DISSERTAÇÃO (PPGEE) 2015.pdf: 15602466 bytes, checksum: 608173ca67ff68da8ae45b321aa82204 (MD5) Previous issue date: 2015-04-24 / Segundo o IBGE em 2013, o Brasil apresentava 13% de sua população composta por pessoas acima de 65 anos, somado a isto, o estilo de vida das sociedades ocidentais tem facilitado o aparecimento de doenças crônicas cada vez mais cedo. A premissa é que tornemos mais eficiente a utilização do nosso sistema de saúde, pois este é um recurso escasso. Uma forma de melhorar esta eficiência é assegurar que os tratamentos prescritos serão devidamente seguidos. Quando o paciente se encontra no hospital uma gama de recursos monitora a saúde do paciente oferecendo acompanhamento seguro na eventualidade de um desvio, alertando e armazenando as informações do paciente no decorrer de suas atividades. Um recurso que ajuda no acompanhamento deste paciente é a monitoração remota do paciente, que possibilita que sensores enviem a informação da condição de saúde do paciente e permitam o acompanhamento do mesmo. Sistemas Físicos Cibernéticos (SFC) são entidades computacionais ligadas em rede que operam entidades no mundo físico de maneira cooperativa. Tais sistemas podem ser utilizados em redes de monitoramento remoto de pacientes com o fim de apresentar e ajustar o tratamento de acordo com as recomendações do médico. Este trabalho propõe um passo na direção da autonomia, que permita uma melhor qualidade de vida ao paciente crônico, permitindo que situações conhecidas e dentro de um regime de segurança previamente determinado pelo médico sejam ajustadas. Este trabalho apresenta uma proposta de um Sistema Físico Cibernético (SFC), que permite que adequações ao tratamento previamente elaboradas sejam colocadas em planos de tratamento por meio de agentes inteligentes e de planejadores SAT e sejam disponibilizadas de acordo com a mudança da condição do paciente, através de uma rede monitoramento do paciente, seguindo padrões estabelecidos para dispositivos médicos utilizados em casa que disponibiliza o tratamento ao paciente. O modelo proposto é indicado para o acompanhamento em casa de doenças crônicas através de um coletor central responsável pela coordenação do acompanhamento do paciente. / According to IBGE in 2013 13% of the population had 60 or more years old. As the national population ages, we have to move towards more efficient use of SUS. A way to improve is the closer followup of patient’s evolution by the healthcare professional. At the hospital the patient has access to a set of equipments and expert knowledge capable to correct the treatment path. From this scenario it is easy to imply the need for a change, the current status quo is unbearable financially and cumbersome for patient and doctor routines. A resource that helps is the remote patient monitoring (RPM) , where sensors provide the latest information about patient’s health status and are able to suggest a course correction on the treatment path. A Cyber-Physical System (CPS) is a network of interacting computational entities with physical inputs and outputs that work together towards a goal. A CPS can be part of a RPM in order to present and adjust the treatment according to the healthcare professional recommendations. This work offers a framework for situations where the medical expert knowledge is complete allowing changes on the treatment path be adjusted with minimum risk. Our proposal to deal with the problem is a CPS based remote patient monitoring network where a model for the system is developed based on Multiagent Agent System (MAS) and automatic planning system based on SAT, allowing safe and minimal course correction on treatment paths already set for a patient. This proposal operates through a central hub element responsible to coordinate the followup of the patient.
40

Improved Grid Resiliency through Interactive System Control

January 2014 (has links)
abstract: With growing complexity of power grid interconnections, power systems may become increasingly vulnerable to low frequency oscillations (especially inter-area oscillations) and dependent on stabilizing controls using either local signals or wide-area signals to provide adequate damping. In recent years, the ability and potential to use wide-area signals for control purposes has increased since a significant investment has been made in the U. S. in deploying synchrophasor measurement technology. Fast and reliable communication systems are essential to enable the use of wide-area signals in controls. If wide-area signals find increased applicability in controls the security and reliability of power systems could be vulnerable to disruptions in communication systems. Even though numerous modern techniques have been developed to lower the probability of communication errors, communication networks cannot be designed to be always reliable. Given this background the motivation of this work is to build resiliency in the power grid controls to respond to failures in the communication network when wide-area control signals are used. In addition, this work also deals with the delay uncertainty associated with the wide-area signal transmission. In order to counteract the negative impact of communication failures on control effectiveness, two approaches are proposed and both approaches are motivated by considering the use of a robustly designed supplementary damping control (SDC) framework associated with a static VAr compensator (SVC). When there is no communication failure, the designed controller guarantees enhanced improvement in damping performance. When the wide-area signal in use is lost due to a communication failure, however, the resilient control provides the required damping of the inter-area oscillations by either utilizing another wide-area measurement through a healthy communication route or by simply utilizing an appropriate local control signal. Simulation results prove that with either of the proposed controls included, the system is stabilized regardless of communication failures, and thereby the reliability and sustainability of power systems is improved. The proposed approaches can be extended without loss of generality to the design of any resilient controller in cyber-physical engineering systems. / Dissertation/Thesis / Ph.D. Electrical Engineering 2014

Page generated in 0.1121 seconds