121 |
Performance evaluation of RC flexural elements strengthened by advanced compositesAndreou, Eftychia January 2002 (has links)
The flexural performance of composite systems made of reinforced concrete, Fibre Reinforced Polymers (FRPs) and adhesives was studied during the current research. The experimental investigation was principally concentrated on the potential use of Kevlar® 49 (aramid fibre) for RC beam strengthening. The main aims of research have been; (a) to investigate the relative merits of using Aramids in comparison to other FRPs, (b) strength optimisation of systems to prevent excessive losses of ductility, (c) to examine the failure mode and crack patterns, together with salient strength factors at ultimate limit state and (d) to carry out analytical modelling using a commercial FE package. The experimental investigation comprised of testing 55 simply supported RC beams of either 1.5m or 2.6m length. In addition to the parametric studies included in points (a)-(d) above (to assess the section characteristics), further experimentation was conducted to investigate the beam performance by varying the factors of; (e) beam shear span, (f) FRP anchorage length, (g) concrete surface preparation, (h) FRP end-anchoring, (i) beam precracking, (j) introduction of air-voids within the bond line of FRP/concrete, (k) influence of cyclic loading and, (1) exposure to aggressive environment. The results from current tests confirm elements of reports from other researchers (by thorough review of literature) that all FRPs have great potential for flexural strengthening of RC members. This is valid even in cases where additional environmental degradation and/or cracking (due to serviceability loads), had taken place. Aramid fibres were found to result in favourable outcomes concerning both strength and ductility enhancements. It was determined, both from experiments and non-linear modelling, that the amount of FRP fibre content is an important factor in every strengthening application. Experimentation showed that depending on the existing condition of the structure (concrete strength, internal reinforcement ratio, section dimensions, degradation level and load configuration), there seems to be a unique level of optimum fibre content. The FRP levels in excess of the optimum were seen to lead to premature brittle tearing-off failure modes. It was also found that to prevent premature beam failure (due to incompatibility of stress at concrete and FRP interface), a maximum possible anchorage length should be considered in order to deliver an optimum section performance. The results from the analytical modelling indicated a most satisfactory agreement with the experimental data after the initial mechanical properties were calibrated. It was found that actual representation of material properties (e.g. steel constitutive law) are of great significance, for an accurate modelling of RC element loaded behaviour. The bond developed between the FRP and concrete is one of the key parameters for achieving good performance of the systems. It was determined that concrete surface preparation and priming is beneficial, while the introduction of air-voids due to poor workmanship can reduce the section load bearing capabilities. Cyclic loading on FRP strengthened sections was found to curtail the full rotational capacity utilisation of the beam. However, even the above mentioned curtailed behaviour was more advantageous than cyclically loaded beam performance without FRP strengthening.
|
122 |
Response of Geosynthetic Reinforced Granular Bases Under Repeated LoadingSuku, Lekshmi January 2016 (has links) (PDF)
Key factors that influence the design of paved and unpaved roads are the strength and stiffness of the pavement layers. Among other factors, the strength of pavements depends on the thickness and quality of the aggregates used in the pavement base layer. In India and many other countries, there is a high demand for good quality aggregates and the availability of aggregate resources is limited. There is a need for the development of sustainable construction methods which can handle aggregate requirements with least available resources and provide good performance. Hence it is imperative to strive for alternatives to achieve improved quality of pavements using supplementary potential materials and methods. The strength of pavement increases with increase in the thickness of the base which has a direct implication on construction cost whereas decreasing the thickness of the base makes it weak which results in low load bearing capacity especially for unpaved roads. The use of different types of geosynthetics like geocell and geogrid are a potential and reliable solution for the lack of availability of aggregates and studies are conducted in this direction. To better understand the performance of any geosynthetically reinforced base layers, it is essential to characterize the pavement material by studying the behavior of these materials under static as well as repeated loading. For unpaved roads, the base layer, made of granular aggregates plays a crucial role in the reduction of permanent deformation of the pavements. The resilient modulus (Mr) of these materials is a key parameter for predicting the structural response of pavements and for characterizing materials in pavement design and evaluation.
Usually, during the design of flexible pavements, pavement materials are treated as homogeneous and isotropic. The use of rollers in the field during pavement construction leads to a higher compaction of material in the vertical direction which introduces stress-induced anisotropy in the base material. The effect of stress-induced anisotropy on the properties of the granular material is studied and discussed in the first part of the research by conducting repeated load triaxial tests. Isotropic consolidated and anisotropically consolidated samples were prepared to investigate the behavior of base materials under stress induced anisotropic conditions. An additional axial load was applied on the isotropically consolidated sample to create anisotropically consolidated sample. The axial loading was provided such that the stress ratio (σ1/σ3), during anisotropic consolidation was kept constant for all the tests at different confining pressures. The effect of repeated loading on the permanent deformation and the resilient modulus for both isotropically and anisotropically consolidated samples, at different confining pressure and loading conditions, are discussed. The behavior of both anisotropically and isotropically consolidated samples has been explained using the record of the excess pore pressures generated during the experiments. The experimental studies show that the permanent strains measured in the vertical direction of the anisotropically consolidated samples are less compared to the results obtained for isotropically consolidated samples. The resilient moduli of the anisotropically consolidated samples were also observed to be higher than that of the isotropically consolidated sample. The study conducted on the pore pressure of both the samples explains better performance of the anisotropically consolidated samples. The studies showed that the isotropically consolidated samples showed higher pore pressures compared to the anisotropically consolidated specimens.
Another factor which influences the resilient modulus of the pavement materials is the geosynthetic reinforcement. Geocell and geogrid reinforced triaxial samples were prepared to study the effect of reinforcement in the resilient modulus of the base materials. From the literature, it can be seen that most of the research in the triaxial testing equipment were carried out in the non-destructive range of confining pressure and deviatoric stress. Several studies have been conducted by the researchers to visualize the pavement response in the elastic range. However, the studies in the plastic creep range and incremental collapse range were highly limited. In the current study, testing is carried out on the triaxial samples for two different stress ranges. In the first sections, loading was applied in the elastic and elastic shakedown range as per AASTHO T-307. For various loading sequences, a comparative analysis has been done for the resilient modulus of the geogrid and geocell. In the next section, the loading was applied on the sample in the plastic shakedown range and incremental collapse range. The results of the permanent strains and resilient modulus of the sections are compared with the corresponding results of the unreinforced section. In the plastic shakedown and incremental collapse range also the permanent strains of reinforced samples were less than those observed in the unreinforced section.
The performance of geosynthetically reinforced pavement layers can be better understood by studying the samples prepared under realistic field conditions. In the case of triaxial experiments the sample size is very less compared to the field conditions and the effect of other pavement layers on the performance of the base layers cannot be studied on triaxial samples. Samples were prepared in the laboratory by modeling the pavement sections in a cuboidal tank, in which different pavement layers are laid one over the other, and a static loading or repeated loading is applied to overcome the bottleneck of small sample size in the triaxial setup. The experiments were conducted on the unreinforced section; geocell reinforced section and geogrid reinforced section placed above strong and weak subgrade. The results of the study are examined regarding the resilient deformation, permanent deformation, pressure distribution and strain measurements for different thicknesses of base layers under repeated loading. The initial parts of the study present the results of experiments and analysis of the results to understand the behavior of geocell reinforced granular base during repeated loading.
In this study, an attempt is made to understand the various factors which influence the behavior of geocell reinforced granular base under repeated loading by conducting plate load tests. The loads applied on the pavements are much higher than the standard axle loading used for the design of pavements. High pressure was applied on all the test sections to simulate these higher loading conditions in the field. The optimum width and height of the geocell to be provided, to get maximum reduction in permanent deformation is studied in detail. The effect of resilient deformation of reinforced and unreinforced base layers is quantified by calculating the resilient modulus of these layers. The studies showed that the geocell reinforcement was effective in reducing the permanent and resilient deformations of base layer when compared to the unreinforced samples. The resilient modulus calculated was higher for the reinforced sample with half of the thickness of the unreinforced sample. The effect of reinforcement in the stress distribution within the base layer is also studied by measuring the pressures at different depths of the base layer. The results showed that the pressure getting transferred to the subgrade level was much lower in the case of geocell reinforced base layer. The ultimate aim of any pavement design method is to reduce the distress in the subgrade level and thus leading to increased life of pavements. Pressures at the subgrade level for reinforced and unreinforced sections are studied in detail, the main parameter under study being the stress distribution angle, to investigate the distress in the subgrade level. It was observed that the geocell reinforced sample showed higher stress distribution angle when compared to its unreinforced counterpart. Another important factor that has to be studied is the strains at the subgrade level since it is the governing factor of causing rutting in the pavements. From the experiments conducted in the study, it was shown that the reinforcement is very effective in reducing the strains at the top of subgrades. The implications of the current study are brought out in terms of improved pavement performance as the carbon emission reductions. It is important to analyze the performance of reinforced section under realistic field conditions. To do that experiment were conducted on reinforced and unreinforced base layers placed on top of weak subgrade material. The study showed that the reinforcements are effective in reducing the deformations under weak subgrade conditions also but not as effective as it was under strong subgrade case. The experimental results were then validated with the two-dimensional mechanistic-empirical model for geocell reinforced unpaved roads for predicting the performance of pavements under a significant number of cycles. The modified permanent deformation model which incorporates the triaxial test results and strains measured directly from the base sections were used to model and validate.
Plate load experiments were also conducted on base layers reinforced with geogrid to understand the behavior of these reinforced samples under repeated loading. Several factors like the width of the geogrid to be provided and the depth of placing the geogrid in the base layer were studied in detail to achieve maximum reduction in deformations. Permanent and resilient deformation studies were carried out for both reinforced and unreinforced sections of varying thicknesses, and a comparison was made to understand the effect of reinforcement. The geogrid reinforcement could effectively reduce the permanent and resilient deformations when compared to the unreinforced sections. A study was also carried out on the resilient modulus, which explained the better performance of the geogrid reinforced samples by showing higher resilient modulus for reinforced samples than the unreinforced specimens. The performance of the geogrid reinforced base layers was further verified by studying the pressure distribution at the subgrade level and by calculating the stress distribution angle corresponding to the reinforced and unreinforced samples. The strains at the subgrade level were also studied and compared with the unreinforced sample which showed a better performance of geogrid reinforced samples. The results from the strain gauges fixed in the geogrid were further used to model and validate the permanent deformation model. Experiments were conducted on geogrid-reinforced base layer placed above weak subgrade conditions. The results showed that the reinforcement was effective in reducing the deformations under weak subgrade conditions also. Apart from conducting the laboratory studies, experimental results were numerically modeled to accurately back-calculate the resilient moduli of the layers used in the study. 3D numerical modeling of the unreinforced and honeycomb shaped geocell reinforced layers were carried out using finite element package of ANSYS. The subgrade layer, geocell material, and infill material were modeled with different material models to match the real case scenario. The modeling was done for
both static and repeated load conditions. The material properties were changed in a systematic fashion until the vertical deformations of the loading plate matched with the corresponding values measured during the experiment. The experimental study indicates that the geocell reinforcement distributes the load in the lateral direction to a relatively shallow depth when compared to the unreinforced section. Numerical modeling further strengthened the results of the experimental studies since the modeling results were in sync with the experimental data.
|
123 |
Behaviour of helical anchors subjected to cyclic loadings / Comportamento de ancoragens helicoidais submetidas a carregamentos cíclicosJosé Antonio Schiavon 30 September 2016 (has links)
Helical anchors, used widely to resist uplift loading for a variety of applications, including in transmission towers, pipelines, offshore structures, etc., are subjected to environmental cyclic loads that influence the anchor performance and may induce fatigue failure. However, the influence of cyclic loading on helical anchor behaviour is unknown. A comprehensive evaluation of the effect of cyclic loading on the load-displacement response of single-helix anchors in sandy soils is presented here, including an interaction diagram to help designers evaluate the impact of different conditions in cyclic loadings. The experimental work of this thesis includes geotechnical centrifuge modelling and field load tests. The centrifuge model tests were carried out with reduced scale models of helical anchors in sand, at IFSTTAR (Nantes, France). The field load tests were performed on helical anchors installed in a tropical residual soil of the Experimental Site of the University of São Paulo (São Carlos, Brazil). In addition, numerical modelling was used to predict the pre- and postcyclic responses of the single-helix anchors tested in a centrifuge. The main findings of this research are: (a) helical anchor behaviour is governed by helix bearing resistance, and no loss of helix bearing capacity was observed in the range of cyclic loadings tested, (b) the degradation of shaft resistance was noticed mainly during the first 100 cycles, when the accumulation of permanent displacements is more significant, (c) an interaction diagram showing the different conditions of cyclic stability is proposed from the results of the experimental data, (d) modified values of the bearing capacity factor in tension (Nq) are suggested for the estimation of post-cyclic uplift capacity of single-helix anchors in sand, (e) the installation effect of the anchor should be taken into account in the numerical model in order to obtain reliable predictions of the helical anchor performance. / As estacas helicoidais são largamente utilizadas para resistir a carregamentos de tração em uma variedade de aplicações como torres de linhas de transmissão de energia, dutos enterrados, estruturas offshore, etc. Estes tipos de estruturas são normalmente submetidos a carregamentos cíclicos que influenciam o desempenho de fundações por estacas helicoidais submetidas a esforços de tração, e podem induzir ruptura por degradação da capacidade de carga. Contudo, a influência do carregamento cíclico no comportamento das estacas helicoidais (ou ancoragens helicoidais, quando submetidas apenas a esforços de tração) é pouco conhecida. Uma avaliação abrangente do efeito de carregamentos cíclicos sobre o comportamento das ancoragens helicoidais é apresentada nesta tese, incluindo um diagrama de interação para auxiliar na avaliação do impacto de diferentes condições de carregamento cíclico. O trabalho experimental desta tese inclui modelagem em centrífuga geotécnica e ensaios de carregamento cíclico em estacas na grandeza real em campo. Os ensaios em centrífuga foram realizados com modelos reduzidos de estacas helicoidais em areia, no IFSTTAR (Nantes, França). Os ensaios de campo foram realizados em ancoragens helicoidais instaladas no solo residual tropical do Campo Experimental de Fundações da Universidade de São Paulo (São Carlos, Brasil). Além disso, modelos numéricos foram utilizados para simular os resultados do comportamento das ancoragens helicoidais ensaiadas em centrífuga nas condições pré- e pós-ciclos. Os principais resultados desta pesquisa são: (a) a capacidade de carga à tração da ancoragem helicoidal é controlada pela capacidade de carga da hélice, (b) a degradação da resistência por atrito lateral foi observada principalmente durante os primeiros 100 ciclos, período em que a acumulação dos deslocamentos permanentes é mais significante, (c) um diagrama de interação mostrando as diferentes condições de estabilidade cíclica é proposto a partir dos resultados experimentais em centrífuga, (d) valores modificados do fator de capacidade de carga em tração (Nq) são sugeridos para estimativa da capacidade pós-ciclos de ancoragens helicoidais com uma hélice em areia, (e) o efeito da instalação da ancoragem deve ser levado em consideração no modelo numérico para que se obtenha previsões confiáveis do desempenho de ancoragens helicoidais.
|
124 |
Metodologia de análise de fadiga para o desenvolvimento de componentes via CAE e medições estruturais / Fatigue analysis methodology for components development via CAE and structural measurementsCaio de Carvalho Scozzafave 06 October 2014 (has links)
Esse trabalho propõe uma metodologia de otimização no processo de aprovação de componentes estruturais submetidos a carregamentos cíclicos que já tiveram a primeira rodada de testes físicos e falharam sem atingir os critérios de aprovação previamente estabelecidos. Os estudos de caso utilizados na aplicação do método foram dois componentes de suspensão de veículos comerciais. A metodologia proposta tem em sua base diversos tópicos da engenharia, como o estudo dos materiais dos componentes, análise de tensão e fadiga via elementos finitos, medição e análise de sinal de deformação e força, teste de durabilidade acelerado, além de correlação entre simulação e realidade. No âmbito da fadiga, a análise foi efetuada em ambiente virtual, através de um programa capaz de importar as tensões da simulação numérica e medições estruturais. É utilizada a metodologia S-N (tensão vida), através da criação de curvas S-N locais sintéticas, alteradas da curva original via fatores de influência como gradiente de tensão, tensão média (via diagrama de Haigh), rugosidade superficial e também pela distribuição estatística das propriedades do material. Por se tratar de carregamentos cíclicos aleatórios, uma análise de proporcionalidade do sinal é feita, além da utilização da previsão de vida em fadiga abordando os conceitos da fadiga uniaxial (utilizando tensão principal e von Mises) e também no caso multiaxial (utilizando o método dos planos críticos e tensão normal escalonada). Um grande grau de correlação entre simulação de tensão e testes físicos foi encontrado (pelo menos 90%). A previsão de falha por fadiga para os dois casos teve seus melhores resultados utilizando o método dos planos críticos. Os dois componentes encontram-se homologados por essa metodologia e atualmente são utilizados por veículos comerciais de série sem falhas observadas em campo, mostrando uma tendência de assertividade do método. / This work proposes a methodology to optimize the approval of structural components subjected to cyclic loadings that have had the first round of physical testing and failed to achieve the approval criteria previously established process. The case studies used in the application of the method were two commercial vehicle suspension components. The proposed methodology has its base in various engineering topics such as the study of the component materials, stress analysis and fatigue via finite elements, measurement and signal analysis of deformation and strength, accelerated durability test, and correlation between simulation and reality. Within the fatigue, the analysis was performed in a virtual environment, through a software able to import the stresses of numerical simulation and structural measurements. The S-N method (stress life) is used, through the creation of local synthetic S-N curves. The curve is modified from the original via influence factors such as gradient stress, mean stress (via Haigh diagram), surface roughness and also the statistical distribution of material properties. Because of the random cyclic loading, an analysis of the proportionality sign is made, in addition of the use of the fatigue life prediction by uniaxial fatigue (using principal stress and von Mises) and also in the multiaxial case (using the critical plans method and normal scaled stress). A high degree of correlation between stress and physical simulation tests was found (at least 90%). The prediction of fatigue failure for the two cases had their best results using the critical plans method. The two components are approved by this methodology and are currently used by commercial vehicles series without failures observed in the field, showing an assertiveness trend of the method.
|
125 |
Vliv mnohonásobného zatěžování na vybrané parametry lehkého betonu / Influence of multiple cyclic loading on the selected parameters of lightweight concreteAlexa, Martin January 2018 (has links)
The diploma thesis deals with the observation of the values of selected parameters (especially the static modulus of elasticity) of light-weight concrete in compression before and after multiple cyclic loading. The deformation of test specimens during multiple cyclic loading were measured with resistive strain gauges. Test specimens (cylinders with a diameter of 150 mm and height of a 300 mm) were cyclically loaded and up to 4 500 loading cycles were performed. The aim of this thesis is assessment changes in the values of static modulus of elasticity depending on the number of loading cycles.
|
126 |
Role of Plasticity in Nitinol Fatigue / Role of Plasticity in Nitinol FatigueShayanfard, Pejman January 2021 (has links)
Disertace analyzuje vliv koncentrátorů napětí na průběh martensitické transformace, vznik plastické deformace a její vliv na přerozdělení napětí a vznik zbytkového pnutí a reziduálního martenzitu v okolí koncentrátorů v prvcích ze slitin s tvarovou pamětí NiTi. Vliv je analyzován v režimech superelastického isotermálního cyklování a aktuačního cyklování, t.j. teplotního cyklování pod vnějším napětím. Disertace využívá pro vyhodnocení vlivu experimentální přístup spolu s numerickými simulacemi metodou konečných prvků na modelových případech tenkých pásků ze slitin NiTi opatřených půlkruhovými vruby. V experimentální části je vyhodnocován vliv koncentrátorů pomocí termomechanických experimentů s využitím metod obrazové korelace a rentgenové mikrodifrakce pro lokální analýzu deformací a fázových objemových podílů v průběhu cyklování v okolí vrubů. Simulace metodou konečných prvků poskytují komplementární informace o průběhu napětí, deformací a martensitické transformaci, zejména o vývoji jednotlivých složek celkové deformace, tj. elastické a plastické, a vývoji zbytkového pnutí a s ním souvisejícím zbytkovým martensitem.Disertace je dále doplněna o numerickou analýzu vlivu konstrukce stentů na lokální cyklický průběh martensitické transformace a jeho vliv na únavové vlastnosti.
|
127 |
Ermüdung des Verbundes von Stahlbeton unter QuerzugLindorf, Alexander 01 December 2011 (has links)
Im Mittelpunkt der vorliegenden Arbeit steht die gezielte Analyse des Verbundverhaltens zwischen Bewehrungsstahl und Beton unter kombinierter Beanspruchung aus Ermüdung und Querzug. Den Hintergrund bilden Stahlbetonbauteile, wie z. B. Fahrbahnplatten von Verbundbrücken, welche einen zweiaxialen Lastabtrag unter nicht vorwiegend ruhenden Belastungen aufweisen.
Die Untersuchungen für normal- und hochfesten Beton erfolgten an Ausziehkörpern mit einem durch Querzugspannungen hervorgerufenen Längsriss entlang des Bewehrungsstabes. Das Versuchsprogramm beinhaltete hochzyklische Schwellversuche mit unterschiedlichen Schwingspielen und variierenden Längsrissbreiten bis zu einer Million Lastwechseln. Anhand der Entwicklung des Schlupfes zwischen Bewehrungsstab und Beton konnte eine deutliche Abhängigkeit des Verbundwiderstandes vom Querzug beobachtet werden.
Aufbauend auf der Schlupfentwicklung erfolgt die Ableitung von normierten Wöhlerlinien der Verbundermüdung. Diese Wöhlerlinien können direkt in Beziehung zu den Wöhlerlinien der Betonstahlermüdung gesetzt werden und vereinfachen die Erstellung von Dauerfestigkeitsdiagrammen für Bemessungszwecke. Es wird deutlich, dass die Ermüdungsfestigkeit des Verbundes durch das Vorhandensein eines Längsrisses gegenüber der Betonstahlermüdung verstärkt an Bedeutung gewinnt. / The main focus of the present work is the specific analysis of the bond behaviour between reinforcement and concrete under combined loading due to fatigue and transverse tension. The background is formed by reinforced concrete elements such as bridge decks of steel-concrete composite bridges, which show a biaxial load bearing behaviour under not predominantly monotonic loading.
The investigations for both normal strength and high performance concrete were conducted on pull-out specimens with a longitudinal crack along the reinforcing bar caused by transverse tensile stresses. The experimental program included high cyclic tests with different stress ranges and varying longitudinal crack widths up to one million load cycles. By means of the slip development, a definite dependency of the bond strength on the transverse tension could be observed.
Based on the slip development, normalised S-N curves for bond fatigue have been deduced. These S-N curves can be set in direct relation to the S-N curves for steel fatigue and simplify creating constant life diagrams for design purposes. It becomes clear that the bond fatigue strength, due to an existing longitudinal crack, gains in importance in comparison to the fatigue strength of the reinforcing steel.
|
128 |
Bond behavior of cement-based repair materials under freeze-thaw and cyclic loading conditionsWang, Boyu 22 April 2022 (has links)
According to the 2019 Canadian infrastructure report card, a concerning amount of municipal infrastructure is in poor or very poor condition. The infrastructure in this condition requires immediate action for rehabilitation or replacement. For concrete infrastructure, an effective repair can extend its service life and ensure that the services it provides continue to meet the community expectations. However, unfavorable environmental factors such as repeated/cyclic loads and freezing and thawing cycles adversely affect the bond between substrate concrete and repair materials, which lowers the structural capacity of repaired structures. So far, researchers have found that bond strength of repair can be affected by surface roughness, surface moisture, chemical adhesion or cohesion, curing regime, properties of substrate and repair materials, use of bond agent, and curing regimes. These findings are mostly based on the studies that focused on cold-jointed cylinders or beams, but in real-life repair situations, repairs of beams or slabs are located at either tension or compression side of the structure. Currently, there is no comprehensive study that investigates the bond of concrete repair under a combination of freezing and thawing and repeated/cyclic loading conditions. In addition, it is challenging to provide a rapid and non-destructive evaluation of the bond deterioration of repair materials.
To address these issues systematically, this dissertation breaks the task into four phases. Phase (I) focuses on the development of an engineered “crack-free” repair mix that contains polypropylene (PP) fiber. A novel method is used to surface treat the PP fibers with supplementary cementitious materials. The effectiveness of surface-treating fibers for improved bond strength and reduced cracking is investigated. The compressive, tensile, and flexural strength of this engineered repair mix are determined and compared with two commercially available repair materials.
The results from Phase I show that by adding 0.2% (by weight) Metakaolin-treated fibers into concrete mix, the compressive strength improves by up to 15.7% compared to mixes with untreated fibers. This study achieved a strength increase of 13.5% as compared to the reported 3.3% in other studies that use 25 times the amount of metakaolin used in this study. The experimental results confirm that at 0.2% dosage level, the use of novel surface treating technique is a cost-effective way to improve the strength of repair materials.
Phase (II) focuses on characterizing the bond strength of various repair systems after freezing-thawing (FT) damage using both non-destructive and destructive methods. Two innovative sounding methods, which overcome the subjectivity of the traditional chain drag method, are used to evaluate FT damage non-destructively. In the experimental study, beams with a U-shaped cut are made to simulate conditions experienced by a concrete structure during a typical repair project. Three types of repair materials are used including cementitious repair concrete, cementitious repair mortar, and polymer-modified cementitious mortar. After up to 300 cycles of freeze-thaw exposure, resonant frequency and bond flexural strength of the prismatic specimens are determined. The empirical equations relating Non-destructive test (NDT) measurements and flexural bond strength of the repaired structures after freeze-thaw (FT) exposure are proposed.
The results from Phase II show that the change in dynamic modulus of elasticity determined from NDTs agrees well with the change in other measurements including flexural bond strength, interfacial crack width, and mass loss after freeze-thaw exposure. In this study, linear relationships are established between dynamic modulus of elasticity and flexural bond strength for both cementitious and polymer-modified cementitious repair mortar with a coefficient of determination ranging between 0.87 and 0.95. The proposed empirical models can be used to predict bond flexural strength of repaired structures based on NDT measurement. Also, it was found that the samples repaired with polymer-modified cementitious mortar (Mix P) have superior FT resistance compared to other repaired samples.
Phase (III) focuses on investigating the structural capacity and bond performance of repaired beams after cyclic/repeated loading. To accelerate the test process, a novel modified loading regime consisting of cycle groups of increasing cyclic/repeated stress amplitude is proposed. The models proposed by literature and current codes and standards are used to validate the results. Phase (IV) focuses on the development of the damage models for both individual and combined FT and cyclic loading exposure on repaired concrete structures.
The results in phase III show the feasibility of using the Palmgren-Miner rule and Goodman linear model to estimate the fatigue life of repaired structures. This was confirmed within the context of this study. This study established the usefulness of using groups of increasing cyclic stress amplitude to accelerate the fatigue test process. The two-million cycle fatigue endurance limit estimated using cycle groups of Mix S (70.8%) was very similar to what was reported in the literature (71%) using the traditional time-consuming cyclic loading method. This study found that the formulas proposed by CSA 23.3 can effectively predict the moment resistance of both intact (control) and repaired RC beams. The ratio of experimental moment resistance values to its predictions ranges from 0.91 to 1.04. Based on the experimental results of previous three phases, an empirical model that predicted the fatigue service life of FT-damaged concrete structures is proposed.
Future research requires a more comprehensive study on the FT performance of various polymer-modified cementitious mortars of different mix designs in repairing concrete structures. By increasing the number of tested specimens, a better relationship could be established between destructive and NDT methods. Future research is also required to explore the combined effect of FT and cyclic loading on repaired RC structures experimentally. / Graduate / 2023-03-22
|
129 |
Study of Bond Behavior at Rebar and Concrete Interface through Beam-end Specimens with Consideration of CorrosionHauff, Derek Allen Johnson 01 May 2022 (has links)
No description available.
|
130 |
Optimization of Shape Memory Alloy Structures with Respect to Fatigue / Optimisation structurale vis-à-vis de la fatigue des structures en alliages à mémoire de forme.Gu, Xiaojun 25 September 2017 (has links)
Cette thèse présente une approche globale d’optimisation vis-à-vis de la fatigue des matériaux et structures en alliages à mémoire de forme (AMF). Cette approche s’articule en trois étapes : i) Le développement d’une loi de comportement capable de prédire la réponse thermomécanique à l’état stabilisé d’une structure en AMF sous chargement cyclique multiaxial non proportionnel. On prend notamment en compte la dépendance de la déformation résiduelle par rapport à la température. Par ailleurs, la méthode LATIN à grand incrément de temps a été généralisée pour les AMF dans le cadre du modèle ZM. Ceci permet de résoudre les problèmes de convergence numérique rencontrés lorsque le processus de transformation de phase se produit avec une pente du plateau de transformation faible. ii) Le développement d’un critère de fatigue à grand nombre de cycles pour les AMF. Ce critère s’inscrit dans le cadre de la théorie d’adaptation à l’instar du critère de Dang Van pour les métaux élasto-plastiques. Le critère proposé permet de calculer en chaque point de la structure en AMF un facteur de fatigue indiquant son degré de dangerosité. iii) Le développement d’une approche d’optimisation structurale qui peut être utilisée pour améliorer la durée de vie en fatigue prédite par le critère proposé dans la deuxième partie. Des exemples numériques sont traités pour valider chaque étape. L‘approche globale a par ailleurs été testée et validée pour l’optimisation structurale d’un stent. / This thesis presents a comprehensive and effi cient structural optimization approach for shape memory alloys (SMAs) with respect to fatigue. The approach consists of three steps: First, the development of a suitable constitutive model capable of predicting, with good accuracy, the stabilized thermomechanical stress state of a SMA structure subjected to multiaxial nonproportional cyclic loading. The dependence of the saturated residual strain on temperature and loading rate is discussed. In order to overcome numerical convergence problems in situations where the phase transformation process presents little or no positivehardening, the large time increment method (LATIN) is utilized in combination with the ZM (Zaki-Moumni) model to simulate SMA structures instead of conventional incremental methods. Second, a shakedown-based fatigue criterion analogous to the Dang Van model for elastoplastic metals is derived for SMAs to predict whether a SMA structure subjected to high-cycle loading would undergo fatigue. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high-cycle fatigue. Third, a structural optimization approach, which can be used to improve the fatigue lifetime estimated using the proposed fatigue criterion is presented. The prospects of this work include the validation of the optimization approach with experimental data.
|
Page generated in 0.0921 seconds