• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 12
  • 12
  • 11
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 24
  • 23
  • 23
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Comportement sous chargement cyclique des massifs de sol renforcés par inclusions rigides : expérimentations en laboratoire et modélisation numérique / Behaviour under cyclic load of soils improved by rigid piles : experimentations and numerical modelling.

Houda, Moustafa 22 January 2016 (has links)
Une des méthodes les plus populaires et largement utilisée pour l’amélioration des sols compressibles est la technique d'inclusions rigides verticales qui constitue une alternative intéressante aux techniques plus traditionnelles telles que le pré-chargement, la mise en place de drains verticaux, le remplacement du sol en place, etc.Le Projet National ASIRI (Amélioration du Sol par Inclusions Rigides) a permis d’apporter des réponses sur le comportement de cette technique de renforcement et d’établir des recommandations de dimensionnement et de réalisation. Celui-ci comprend un volet expérimental (expérimentations en vraie grandeur, modèles physiques réduits à 1g, études en chambre d’étalonnage) et un volet numérique. Cependant, les recommandations publiées par ASIRI sont limitées aux cas de chargement monotone. Pourtant, différents cas de structures sous chargement cyclique sont couramment rencontrés dans la pratique: chargement des vagues sur les structures offshore, force du vent, charge sismique, la charge de trafic, remplissage et vidange de réservoirs, chargement et déchargement des zones de stockage… Cela nécessite alors de comprendre le comportement sous chargement cyclique et/ou dynamique de ces ouvrages.Ce travail de thèse constitue une contribution à la compréhension du comportement de ce type d’ouvrage, et s’intéresse plus particulièrement à la modélisation des mécanismes qui se développent dans le matelas de transfert de charge lors d’un chargement cyclique vertical quasi-statique. Il se fait suivant deux approches complémentaires : Expérimentale : par des essais sur un nouveau modèle physique réduit tridimensionnel à 1g et à l’échelle 1/10ème, Numérique : par la modélisation numérique tridimensionnelle en milieu continu utilisant le logiciel FLAC3D.Dans un premier temps, le travail expérimental réalisé nous a permis d’étudier le comportement de cette technique de renforcement sous chargement monotone et cyclique mettant en œuvre la méthode de corrélations d’images. La modélisation physique réalisée nous a permis d’étudier l’influence de l’épaisseur de la plateforme de transfert de charge granulaire et des conditions aux limites (cas remblai/cas dallage).Dans un deuxième temps, les résultats expérimentaux nous ont servi comme une base de données pour la validation d’un modèle numérique en milieu continu. La première étape de la modélisation numérique consiste à valider un modèle numérique à la même échelle réduite du modèle physique. La validation de l’approche de modélisation numérique à échelle réduite nous a permis, dans une deuxième étape, de réaliser une étude paramétrique afin de déterminer l’influence des différents paramètres sur le comportement du système. / One of the most popular and widely used methods for soft soil improvement is the reinforcement using vertical rigid inclusions. It constitutes an interesting alternative to the other traditional techniques such as preloading, vertical drains, replacing soil etc...The national French project ASIRI (Amélioration du Sol par Inclusions Rigides) allowed to provide answers about the behavior of this technique and to establish recommendations for design and construction. It included an experimental part (full-scale, 1g physical model experiments and calibration chamber studies) and a numerical part. However, the recommendations established by ASIRI are limited to the case of monotonic loading. Yet, various cases of structures under cyclic loading are commonly encountered in practice: waves loading on offshore structures, wind strength, seismic load, traffic load, filling and emptying of tanks, loading and unloading of storage areas... This then requires the understanding of the behavior of this technique under cyclic and/or dynamic loading.The work done in this thesis constitutes a contribution to understanding the behavior of this type of structures, and is particularly interested in modeling the mechanisms that develop in the load transfer mattress under a quasi-static vertical cyclic loading . Two complementary approaches have been followed: Experimental: by performing experimental tests using a new 1g tridimensional physical model with a scale factor of 1/10, Numerical: by performing numerical tridimensional simulations in a continuous media using the software FLAC3D.At first, the experimental work has allowed us to study the behavior of this reinforcement technique under monotonic and cyclic loading implementing the digital image correlation method. A parametric study performed with the physical modeling allowed us to study the influence of the granular load transfer platform (LTP) and the boundary conditions (presence of a rigid slab at the surface of the LTP).Secondly, the experimental results have served as a database for the validation of a numerical model in continuous medium. The first step of the numerical modeling is to validate a numerical model at the same reduced scale of the physical model. The validation of the numerical modeling approach at the reduced scale allowed us in a second step to perform a parametric study in order to determine the influence of different parameters on the behavior of the system.
92

Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour / Modélisation multi-échelle des composites tissés à matrice thermoplastique, comportement cyclique et dépendance au temps

Praud, Francis 19 April 2018 (has links)
Dans ce travail de thèse, une modélisation multi-échelle est mise en place à partir du concept d’homogénéisation périodique pour étudier le comportement cyclique et dépendant du temps des composites tissés à matrice thermoplastique. Avec l’approche proposée, le comportement macroscopique du composite est déterminé à partir d’une simulation éléments finis effectuée sur une cellule unitaire représentative de la microstructure périodique, où les lois de comportement des constituants sont directement intégrées, à savoir: la matrice et les torons. La réponse locale de la matrice est décrite par une loi de comportement phénoménologique multi-mécanismes intégrant viscoélasticité, viscoplasticité et endommagement ductile. Pour les torons, une loi de comportement hybride micromécanique-phénoménologique est considérée. Cette dernière prend en compte l’endommagement anisotrope et l’anélasticité induite par la présence d’un réseau diffus de microfissures à travers une description micromécanique d’un volume élémentaire représentatif contenant des microfissures. Les capacités du modèle multi-échelles sont validées en comparant les prédictions numériques aux essais expérimentaux. Les capacités du modèle sont également illustrées à travers plusieurs exemples où le composite subit des déformations dépendantes du temps lors de chargements monotones, de chargements à amplitude constante ou cyclique et encore lors de chargement multiaxiaux non proportionnels. En outre, le modèle multi-échelle est aussi utilisé pour analyser l’influence des mécanismes de déformation locaux sur la réponse macroscopique du composite. / In this thesis, a multi-scale model established from the concept of periodic homogenization is utilized to study the cyclic and time-dependent response of thermoplastic-based woven composites. With the proposed approach, the macroscopic behaviour of the composite is determined from a finite element simulation of the representative unit cell of the periodic microstructure, where the local constitutive behaviours of the components are directly integrated, namely: the matrix and the yarns. The local response of the thermoplastic matrix is described by a phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. For the yarns, a hybrid micromechanical-phenomenological constitutive model is considered. The latter accounts for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network through the micromechanical description of a micro-cracked representative volume element. The capabilities of the multi-scale model are validated by comparing the numerical prediction with experimental data. The capabilities of the model are also illustrated through several examples where the composite undergoes time-dependent deformations under monotonic loading, constant or cyclic stress levels and non-proportional multi-axial loading. Furthermore, the multi-scale model is also employed to analyse the influence of the local deformation processes on the macroscopic response of the composite.
93

Grain-scale investigation of sand-pile interface under axial loading conditions using x-ray tomography / Etude micromécanique de l'interface sable-pieu sous chargement axial par tomographie rayons X

Doreau Malioche, Jeanne 28 September 2018 (has links)
Cette thèse présente une étude expérimentale des mécanismes contrôlant la réponse macroscopique d’une interface sable-pieu sous sollicitations axiales monotones et cycliques. Une approche innovante associant la tomographie rayons X à des outils avancés d’analyses d’images en trois dimensions (3D) est utilisée dans le but d’extraire des informations à différentes échelles, notamment à l’échelle micro. L’analyse quantitative du comportement individuel des grains situés au voisinage du pieu fournit une collection de données 3D qui pourraient être utilisées pour la validation de modèles numériques ou théoriques.Une série de tests est réalisée sur un pieu instrumenté à pointe conique installé par vérinage monotone dans un échantillon dense de sable calcaire. Après l’installation, le pieu est soumis à un grand nombre de cycles axiaux contrôlés en déplacements (jusqu’à 2000 cycles), à contraintes constantes. Ces essais ont été conduits dans une mini chambre de calibration qui permet d’acquérir des tomographies rayons X à haute résolution après différentes étapes de chargement. Il est admis que le dispositif expérimental n’est pas représentatif des conditions d’essais sur pieux in-situ pour les raisons principales suivantes : le ratio entre le diamètre de la chambre le diamètre du pieu et le ratio entre le diamètre du pieu et la taille moyenne des grains sont bien inférieurs aux ratios recommandés dans la littérature afin de limiter les effets d’échelle. Par conséquent, les résultats obtenus dans ce travail ne peuvent et ne doivent pas être directement extrapolés pour le design de pieux réels. Cependant, un tel dispositif permet de reproduire qualitativement des tendances similaires à celles observées à l’échelle macro sur des essais à grande échelle et d’observer des mécanismes se déroulant à l’échelle micro.Les images 3D obtenues par reconstruction des tomographies rayons X sont utilisées afin d’identifier et de suivre l’évolution des grains individuels. Le champ cinématique complet en 3D est mesuré grâce à un code de corrélation d’images numériques 3D (DIC), « TomoWarp2 ». Des outils de traitement d’image sont également employés pour suivre les changements de porosité et la production de fines par broyage des grains à l’interface.Pendant la mise en place du pieu, plusieurs zones où les déplacements se concentrent sont identifiées. Une recirculation des grains le long du fût du pieu est mise en évidence. Globalement, le sable a un comportement dilatant à l’exception d’une fine couche (épaisseur d’environ 3 à 4·D50) autour du pieu où les fines sont produites. Pendant les cycles, la réponse macroscopique de l’interface montre une évolution en deux phases, avec une augmentation non négligeable de la résistance du fût dans la seconde phase. Pour ces deux phases, la mesure de la cinématique granulaire révèle un comportement du sol différent associé à une densification importante à l’interface. Dans la première phase, le sol se contracte radialement dans une zone de 4·D50 d’épaisseur. Ce phénomène est certainement dû au réarrangement granulaire mesuré par DIC. Dans la seconde phase, les grains de sables se déplacent difficilement et la densité à l’interface atteint un seuil pour lequel le frottement sur le pieu augmente de manière significative. / This doctoral work presents an experimental investigation into the mechanisms governing the macroscopic response of sand-pile interface during monotonic installation and subsequent axial cyclic loading. An innovative approach combining x-ray tomography and advanced image analysis tools is employed to extract information at different scales, including the micro-scale. A quantitative analysis of the behavior of individual sand grains in the vicinity of the pile offers valuable three-dimensional (3D) data set against which theoretical or numerical approaches could be tested.A series of tests is run on an instrumented close-ended conical model pile installed by monotonic jacking in a dense calcareous sand sample. Following the installation, the model pile is submitted to a large number of axial displacement-controlled loading cycles (a few thousands cycles) under constant normal stress. The tests are performed in a mini-calibration chamber that allows the acquisition of high resolution x-ray images at different stages of the loading. The chamber is admittedly not representative of field pile testing conditions for the main following reasons: the calibration chamber-to-pile diameter ratio and the sand particle-to-pile diameter ratio are far below the ratios recommended in the literature to limit scale effects on the interface response. Consequently, the results presented in this work can not, and should not, be directly extrapolated to field pile design. Yet, such a setup is able to reproduce qualitatively trends that are similar to those obtained at the macro-scale on large-scale experiments and allows the observation of full-field mechanisms taking place at the micro-scale.3D images resulting from the reconstruction of the x-ray scans are used to identify and follow the evolution of individual sand grains. Full-kinematics are measured thanks to a 3D Digital image Correlation (DIC) code, “TomoWarp2”. Image processing tools are also employed to measure local porosity changes and the production of fines by grain crushing at the interface.During pile installation, different zones where grains displacements concentrate are identified. A recirculation of the grains alongside the pile is also observed. Globally, the sand mass exhibits a dilative behavior except within a relatively thin layer (about 3 to 4·D50 thickness) around the model pile where grain crushing occurs. During subsequent loading cycles, the macroscopic response of sand-pile interface shows a two-phases evolution, with a non negligible increase of shaft resistance in the latter phase. For these two phases, the measurement of grain kinematics reveals a different behavior of the sand mass associated with a significant densification at the interface. In the first phase, the sand mass contracts radially within a region of thickness 4·D50. This mechanism is likely due to inter-granular rearrangement as measure by DIC. In the second phase, sand grains hardly move and the sand mass reaches a threshold density for which the friction on the shaft starts to increase substantially.
94

Constitutive modelling of fibre-reinforced sands under cyclic loads / Modelagem constitutiva de areias reforçadas com fibras sob carregamento cíclico

Silva, Anderson Peccin da January 2017 (has links)
Carregamentos cíclicos são causados de diversas maneiras, como tráfego de veículos, ondas, vento e terremotos. Nos últimos anos, particularmente, tem-se aumentado o número de estudos para este tipo de carregamento devido ao desenvolvimento da engenharia offshore. Além disso, técnicas de melhoramento de solos granulares têm sido empregadas para alterar as características dos solos naturais, com o objetivo de aumentar sua resistência e retardar - ou evitar - a ocorrência de liquefação. Alguns estudos anteriores desenvolveram leis constitutivas completas para areias reforçadas com fibras sob carregamento monotônico, mas não são encontrados na literatura trabalhos sobre a modelagem deste tipo de solos sob carregamentos cíclicos. Sendo assim, essa dissertação desenvolve e valida um novo modelo constitutivo capaz de avaliar o comportamento de solos granulares reforçados com fibras sob carregamento cíclico sob condições não-drenadas. Este modelo é baseado em dois modelos previamente desenvolvidos por Diambra et al. (2013) e Diambra e Ibraim (2014), que utilizam uma técnica de homogeneização para considerar a contribuição da areia e das fibras. O comportamento da areia segue o Modelo Severn-Trent Sand, proposto por Gajo e Muir Wood (1999). Uma vez estruturado o modelo e definido seu procedimento de cálculo, realiza-se uma análise paramétrica, a fim de demonstrar a influência de cada parâmetro das fibras e da areia no comportamento do compósito. Um fator de ajuste para levar em consideração a mudança nas forças interparticulares causada pelas fibras é proposto neste trabalho. Ao final, o modelo é calibrado com resultados experimentais e faz-se uma análise de suas competências e limitações. O processo de calibração mostrou que o modelo é capaz de capturar importantes tendências causadas pela inserção de fibras, como a redução nas deformações axiais e na geração de poropressões, retardando a ocorrência de liquefação. O modelo proposto mostrou-se mais efetivo em reproduzir o comportamento de areias fofas, ou seja, aquelas cujo estado de tensões se encontra acima da linha do estado crítico. / Cyclic loads are induced by several sources, such as traffic, waves, wind and earthquakes. Particularly in the last years, more attention has been given to such loading conditions due to the development of the offshore engineering. Additionally, ground improving techniques have been employed to alter the characteristics of natural soils in order to increase its strength and delay – or avoid – liquefaction. Previous studies have developed complete constitutive laws for fibre-reinforced sands under monotonic loading conditions, but no previous work on modelling granular soils under cyclic loading has been reported. Hence, this research develops and validates a new constitutive modelling which is capable to fully assess the behaviour of fibre-reinforced soils under cyclic loads for undrained conditions. This model is based on two previous models developed by Diambra et al. (2013) and Diambra and Ibraim (2014), which employed a homogenisation technique to scale sand and fibre contribution. The behaviour of the sand follows the Severn-Trent Sand Model proposed by Gajo and Muir Wood (1999). Once the model is structured and its calculation procedure is defined, a parametric analysis is carried out in order to show the influence of each fibre and sand parameter in the composite response. An adjustment factor to account for the change in the interparticle forces caused by the fibres is proposed. Finally, the model is calibrated with experimental results and an analysis of its competences and limitations is performed. The calibration process showed that the model is able to capture important trends caused by the fibre reinforcement, such as a reduction in axial strain and in pore pressure generation, delaying the occurrence of liquefaction. The proposed model was shown to be more effective in reproducing the response of loose sands, i.e. those whose stress states are above the critical state line.
95

Constitutive modelling of fibre-reinforced sands under cyclic loads / Modelagem constitutiva de areias reforçadas com fibras sob carregamento cíclico

Silva, Anderson Peccin da January 2017 (has links)
Carregamentos cíclicos são causados de diversas maneiras, como tráfego de veículos, ondas, vento e terremotos. Nos últimos anos, particularmente, tem-se aumentado o número de estudos para este tipo de carregamento devido ao desenvolvimento da engenharia offshore. Além disso, técnicas de melhoramento de solos granulares têm sido empregadas para alterar as características dos solos naturais, com o objetivo de aumentar sua resistência e retardar - ou evitar - a ocorrência de liquefação. Alguns estudos anteriores desenvolveram leis constitutivas completas para areias reforçadas com fibras sob carregamento monotônico, mas não são encontrados na literatura trabalhos sobre a modelagem deste tipo de solos sob carregamentos cíclicos. Sendo assim, essa dissertação desenvolve e valida um novo modelo constitutivo capaz de avaliar o comportamento de solos granulares reforçados com fibras sob carregamento cíclico sob condições não-drenadas. Este modelo é baseado em dois modelos previamente desenvolvidos por Diambra et al. (2013) e Diambra e Ibraim (2014), que utilizam uma técnica de homogeneização para considerar a contribuição da areia e das fibras. O comportamento da areia segue o Modelo Severn-Trent Sand, proposto por Gajo e Muir Wood (1999). Uma vez estruturado o modelo e definido seu procedimento de cálculo, realiza-se uma análise paramétrica, a fim de demonstrar a influência de cada parâmetro das fibras e da areia no comportamento do compósito. Um fator de ajuste para levar em consideração a mudança nas forças interparticulares causada pelas fibras é proposto neste trabalho. Ao final, o modelo é calibrado com resultados experimentais e faz-se uma análise de suas competências e limitações. O processo de calibração mostrou que o modelo é capaz de capturar importantes tendências causadas pela inserção de fibras, como a redução nas deformações axiais e na geração de poropressões, retardando a ocorrência de liquefação. O modelo proposto mostrou-se mais efetivo em reproduzir o comportamento de areias fofas, ou seja, aquelas cujo estado de tensões se encontra acima da linha do estado crítico. / Cyclic loads are induced by several sources, such as traffic, waves, wind and earthquakes. Particularly in the last years, more attention has been given to such loading conditions due to the development of the offshore engineering. Additionally, ground improving techniques have been employed to alter the characteristics of natural soils in order to increase its strength and delay – or avoid – liquefaction. Previous studies have developed complete constitutive laws for fibre-reinforced sands under monotonic loading conditions, but no previous work on modelling granular soils under cyclic loading has been reported. Hence, this research develops and validates a new constitutive modelling which is capable to fully assess the behaviour of fibre-reinforced soils under cyclic loads for undrained conditions. This model is based on two previous models developed by Diambra et al. (2013) and Diambra and Ibraim (2014), which employed a homogenisation technique to scale sand and fibre contribution. The behaviour of the sand follows the Severn-Trent Sand Model proposed by Gajo and Muir Wood (1999). Once the model is structured and its calculation procedure is defined, a parametric analysis is carried out in order to show the influence of each fibre and sand parameter in the composite response. An adjustment factor to account for the change in the interparticle forces caused by the fibres is proposed. Finally, the model is calibrated with experimental results and an analysis of its competences and limitations is performed. The calibration process showed that the model is able to capture important trends caused by the fibre reinforcement, such as a reduction in axial strain and in pore pressure generation, delaying the occurrence of liquefaction. The proposed model was shown to be more effective in reproducing the response of loose sands, i.e. those whose stress states are above the critical state line.
96

Um modelo para previsão de vida à fadiga de juntas soldadas submetidas a carregamentos combinados. / A fatigue life prediction model of welded joints under combined cyclic loading.

Keurrie Cipriano Goes 09 April 2010 (has links)
O presente trabalho teve como objetivo desenvolver uma metodologia prática e confiável para previsão de vida à fadiga de juntas soldadas a cordão pelo processo MIG/MAG, quando estas estão submetidas a carregamentos cíclicos combinados. A máxima tensão linear no pé da solda, região típica de início de trinca, conhecida como hot spot foi utilizada para prever a vida através do método de Fadiga de Alto Ciclo S x N (Tensão x Vida), largamente empregado em códigos de projeto de estruturas soldadas. O Método dos Elementos Finitos foi utilizado para determinação das tensões estruturais resultantes do carregamento e das descontinuidades geométricas presentes nos cordões de solda. A análise de fadiga foi efetuada em ambiente virtual, através de um software (programa) de fadiga capaz de importar as tensões atuantes na região da solda para cada carregamento, combinando-as e obtendo assim a vida à fadiga decorrente da somatória dos diferentes tipos de carregamento ao qual a junta foi submetida. As propriedades monotônicas e cíclicas dos materiais da junta foram obtidas da literatura e de um extenso banco de dados disponível no software de fadiga. Estas propriedades foram ajustadas com base em ensaios de laboratório nas juntas investigadas. A medição ou modelagem das tensões residuais inerentes ao processo de soldagem não fazem parte do escopo deste trabalho. Contudo, os efeitos térmicos e metalúrgicos resultantes do processo de soldagem, como distorções, tensões residuais, variações microestruturais e propriedades mecânicas foram considerados de forma indireta, através da correção das curvas de fadiga nos corpos de prova investigados. Corpos de prova do tipo tubo-placa foram submetidos a carregamentos cíclicos combinados (flexão e torção) de amplitude constante. O resultado da análise virtual de durabilidade foi, portanto, calibrado com base nestes experimentos e curvas disponíveis em códigos de projeto de fadiga como BS7608 e Eurocode 3. A aplicabilidade deste método numérico-experimental e suas contribuições para a garantia da Integridade Estrutural do projeto de juntas soldadas são apresentadas. Seus desafios e melhorias são por fim discutidos. / The main purpose of this work is to develop a practical and robust methodology to evaluate the fatigue life in seam weld joints fabricated with GMAW process when subjected to combine cyclic loading. The maximum linear stress at the typical crack initiation region, better known as hot spot stress, was used to calculate the fatigue life through high cycle fatigue method S x N (Stress x Life), widely used in design codes for the life assessment of welded structures. The Finite Element Method (FEM) was used to obtain the structural stresses distribution due the external loading and geometric discontinuities very common in seam weld joints. The fatigue analysis was conducted in virtual environment. The FEM stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction. The monotonic and cyclic properties of the joint materials were obtained in the literature and from the fatigue software database. These properties were adjusted based on laboratory fatigue tests in the investigated welded joints configurations. The measurement or modeling of the residual stresses resulted from the welded process is not part of this work. However, the thermal and metallurgical effects, like distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combine cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the welded joints structural integrity design are presented. The challenges and improvements are finally discussed.
97

Numerical Simulation And Experimental Correlation Of Crack Closure Phenomenon Under Cyclic Loading

Seshadri, B R 06 1900 (has links) (PDF)
No description available.
98

Elasto-Plastic Modelling Of Fine Grained Soils - A Variable Moduli Approach

Shantharajanna, H R 07 1900 (has links) (PDF)
No description available.
99

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa January 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
100

Novel Hybrid Columns Made of Ultra-High Performance Concrete and Fiber Reinforced Polymers

Zohrevand, Pedram 26 March 2012 (has links)
The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Page generated in 0.0803 seconds