• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paquets d'Arthur des représentations cohomologiques / Arthur's Paquets of cohomological representations

Arancibia-Robert, Nicolas-Jose 12 June 2015 (has links)
Cette thèse a pour objectif de montrer que les paquets de représentations cohomologiques d’un groupe réductif classique quasi déployé, défini sur R, construits par J. Arthur coïncident avec les paquets précédemments définis de manière plus élémentaire et plus explicite par Adams et Johnson... / The aim of this thesis is to prove that the packets of cohomological representation of quasi-split classical groups, defined over R, by Arthur coincide with the packets defined previously in a more elementary way by Adams and Johnson...
2

SUR QUELQUES MODELES ASYMPTOTIQUES DANS LA THEORIE DES ONDES HYDRODYNAMIQUES

Mammeri, Youcef 17 July 2008 (has links) (PDF)
Les équations de Kadomtsev-Petviashvili (KP) décrivent les ondes de faible amplitude et de grande longueur se déplaçant à la surface de l'eau, principalement dans la direction (Ox). Quant à l'équation de Benjamin-Ono (BO), elle décrit de telles ondes se déplaçant à l'intérieur de l'eau. On s'intéresse à ces équations vue en tant qu'équations de type Benjamin-Bona-Mahony (BBM).<br />Notre travail se divise alors en trois parties. Dans la première partie, on rappelle la modélisation des différentes équations. On montre plus particulièrement que les modèles BBM s'obtiennent à partir du principe fondamental de la dynamique via une analyse asymptotique. On compare alors les solutions des équations de KP, respectivement de BO, avec les solutions des équations de type BBM.<br />Dans la seconde partie, on s'intéresse à certaines propriétés qualitatives des équations généralisées de type BBM. Des résultats de prolongement en temps des bornes sur les normes de Sobolev, de décroissance en temps et de prolongement unique des solutions sont établis.<br />Enfin, on termine avec une étude numérique des solutions des équations KP généralisées en dimension 3 d'espace. Dans cette dernière partie, en collaboration avec F. Hamidouche et S. Mefire, on inspecte numériquement les phénomènes de dispersion, d'explosion en temps fini, de comportement solitonique et d'instabilité transversale.

Page generated in 0.0402 seconds