Spelling suggestions: "subject:"décomposition dominé"" "subject:"décomposition examinée""
1 |
Instabilité de la dynamique en l'absence de décompositions dominées.Gourmelon, Nicolas 13 December 2006 (has links) (PDF)
On veut comprendre les implications dynamiques de l'absence de décompositions dominées. Une décomposition dominée est une forme affaiblie d'hyperbolicité où l'espace tangent d'une variété est la somme directe de sous-fibrés invariants, rangés du plus contracté au plus dilaté par la dynamique. On commence par répondre à une ancienne question de Hirsch, Pugh et Shub, en démontrant l'existence de métriques adaptées pour les décompositions dominées. <br /><br />Sur les surfaces, Mañé a démontré une dichotomie $C^1$-générique entre hyperbolicité et phénomènes de Newhouse (une infinité de puits/sources). Pour cela, il a prouvé que lorsque les décompositions dominées le long d'une orbite périodique sont trop faibles, une $C^1$-pertubation crée un puits ou une source. <br /><br />On généralise ce dernier énoncé à toute dimension en se ramenant à l'étude de cocycles linéaires, grâce à un lemme de Franks. Abdenur, Bonatti et Crovisier en ont déduit des dichotomies $C^1$-génériques en toute dimension entre phénomènes de Newhouse et décompositions dominées sur les ensembles non-errants. <br /><br />Les deux derniers chapitres sont consacrés à la création de tangences homoclines en l'absence de décomposition dominée stable/instable, dans le prolongement de travaux de Wen. Enfin, dans le dernier chapitre, on montre que si la classe homocline d'une selle $P$ n'a pas de décomposition dominée de même indice que $P$, une perturbation crée une tangence associée à $P$.
|
2 |
Contraction de cônes complexes multidimensionnels / Contraction of complex multidimensional conesNovel, Maxence 30 November 2018 (has links)
L'objet de cette thèse est l'introduction, l'étude et l'utilisation des cônes complexes multidimensionnels. Dans un premier temps, nous étudions la grassmannienne des espaces de Banach. Nous définissons une notion de bonne décomposition pour les espaces de dimension p et nous démontronsl'équivalence entre la distance de Hausdorff sur la grassmannienne et la distance fournie par une norme sur l'algèbre extérieure.Dans un deuxième temps, nous définissons les cônes complexes p-dimensionnels ainsi qu'une jauge sur les sous-espaces de dimension p de ces cônes. Nous montrons alors un principe de contraction pour cette jauge. Cela nous permet de prouver, pour un opérateur contractant un tel cône, l'existence d'un trou spectral séparant les p valeurs propres dominantes du reste du spectre. Nous utilisons cette théorie pourdémontrer un théorème de régularité analytique pour les exposants de Lyapunov d'un produit aléatoire d'opérateurs contractant un même cône.Nous donnons également une comparaison entre la distance de Hausdorff entre espaces vectoriels et notre jauge.Enfin, nous introduisons une notion de cône dual pour les cônes p-dimensionnels. Dans ce cadre, nous prouvons que les propriétéstopologiques d'un cône se traduisent en propriétés topologiques sur son dual, et réciproquement. Nous complétons le théorème de régularitéprécédent en démontrant l'existence et la régularité d'une décomposition de l'espace en "espace lent" et "espace rapide". / The subject of this thesis is the introduction, the study and the applications of multidimensional complex cones. First, we study the grassmannian of Banach space. We define a notion of right decomposition for p-dimensional spaces and we prove the equivalence between theHausdorff distance on the grassmannian and the distance given by a norm on the exterior algebra.Then, we define p-dimensional complex cones and a gauge on the subspaces of dimension p of these cones. We show a contraction principle for thisgauge. This allows us to prove, for an operator contracting such a cone, the existence of a spectral gap which isolate the p leading eigenvaluesfrom the rest of the spectrum. We use this theory to prove a theorem of analytic regularity for Lyapunov exponents of a random product ofoperators contracting a cone. We also give a comparison between the Hausdorff distance for vector spaces and our gauge.Finally, we introduce a notion of dual cone for p-dimensional cones. In this setting, we prove that the topological properties of a cone translateinto topological properties for its dual and conversely. We complete the previous regularity theorem by proving the existence and the regularity ofa dominated splitting of the space into a "fast space" and a "slow space".
|
3 |
Classes de récurrence par chaînes non hyperboliques des difféomorphismes C¹ / Non-hyperbolic chain recurrence classes of C¹ diffeomorphismsWang, Xiaodong 24 May 2016 (has links)
La dynamique d'un difféomorphisme d'une variété compacte est essentiellement concentrée sur l'ensemble récurrent par chaînes, qui est partitionné en classes de récurrence par chaînes, disjointes et indécomposables. Le travail de Bonatti et Crovisier [BC] montre que, pour les difféomorphismes C¹-génériques, une classe de récurrence par chaînes ou bien est une classe homocline, ou bien ne contient pas de point périodique. Une classe de récurrence par chaînes sans point périodique est appelée classe apériodique.Il est clair qu'une classe homocline hyperbolique ni contient d'orbite périodique faible ni supporte de mesure non hyperbolique.Cette thèse tente de donner une caractérisation des classes homoclines non hyperboliques en montrant qu'elles contiennent des orbites périodiques faibles ou des mesures ergodiques non hyperboliques. Cette thèse décrit également les décompositions dominées sur les classes apériodiques.Le premier résultat de cette thèse montre que, pour les difféomorphismes C¹-génériques, si les orbites périodiques contenues dans une classe homocline H(p) ont tous leurs exposants de Lyapunov bornés loin de zéro, alors H(p) doit être (uniformément) hyperbolique. Ceci est dans l'esprit des travaux sur la conjecture de stabilité, mais il y a une différence importante lorsque la classe homocline H(p) n'est pas isolée. Par conséquent, nous devons garantir que des orbites périodiques "faibles'', crées par perturbations au voisinage de la classe homocline, sont contenues dans la classe. En ce sens, le problème est de nature "intrinsèque'', et l'argument classique de la conjecture de stabilité est impraticable.Le deuxième résultat de cette thèse prouve une conjecture de Díaz et Gorodetski [DG]: pour les difféomorphismes C¹-génériques, si une classe homocline n'est pas hyperbolique, alors elle porte une mesure ergodique non hyperbolique. C'est un travail en collaboration avec C. Cheng, S. Crovisier, S. Gan et D. Yang. Dans la démonstration, nous devons appliquer une technique introduité dans [DG], et qui améliore la méthode de [GIKN], pour obtenir une mesure ergodique comme limite d'une suite de mesures périodiques.Le troisième résultat de cette thèse énonce que, génériquement, une décomposition dominée non-triviale sur une classe apériodique stable au sens de Lyapunov est en fait une décomposition partiellement hyperbolique. Plus précisément, pour les difféomorphismes C¹-génériques, si une classe apériodique stable au sens de Lyapunov a une décomposition dominée non-triviale Eoplus F, alors, l'un des deux fibrés est hyperbolique: soit E contracté, soit F dilaté.Dans les démonstrations des résultats principaux, nous construisons des perturbations qui ne sont pas obtenues directement à partir des lemmes de connexion classiques. En fait, il faut appliquer le lemme de connexion un grand nombre (et même un nombre infini) de fois. Nous expliquons les méthodes de connexions multiples dans le Chapitre 3. / The dynamics of a diffeomorphism of a compact manifold concentrates essentially on the chain recurrent set, which splits into disjoint indecomposable chain recurrence classes. By the work of Bonatti and Crovisier [BC], for C¹-generic diffeomorphisms, a chain recurrence class either is a homoclinic class or contains no periodic point. A chain recurrence class without a periodic point is called an aperiodic class.Obviously, a hyperbolic homoclinic class can neither contain weak periodic orbit or support non-hyperbolic ergodic measure.This thesis attempts to give a characterization of non-hyperbolic homoclinic classes via weak periodic orbits inside or non-hyperbolic ergodic measures supported on it. Also, this thesis gives a description of the dominated splitting on Lyapunov stable aperiodic classes.The first result of this thesis shows that for C¹-generic diffeomorphisms, if the periodic orbits contained in a homoclinic class H(p) have all their Lyapunov exponents bounded away from 0, then H(p) must be (uniformly) hyperbolic. This is in spirit of the works of the stability conjecture, but with a significant difference that the homoclinic class H(p) is not known isolated in advance. Hence the "weak'' periodic orbits created by perturbations near the homoclinic class have to be guaranteed strictly inside the homoclinic class. In this sense the problem is of an "intrinsic" nature, and the classical argument of the stability conjecture does not pass through.The second result of this thesis proves a conjecture by Díaz and Gorodetski [DG]: for C¹-generic diffeomorphisms, if a homoclinic class is not hyperbolic, then there is a non-hyperbolic ergodic measure supported on it. This is a joint work with C. Cheng, S. Crovisier, S. Gan and D. Yang. In the proof, we have to use a technic introduced in [DG], which developed the method of [GIKN], to get an ergodic measure by taking the limit of a sequence of periodic measures.The third result of this thesis states that, generically, a non-trivial dominated splitting over a Lyapunov stable aperiodic class is in fact a partially hyperbolic splitting. To be precise, for C¹-generic diffeomorphisms, if a Lyapunov stable aperiodic class admits a non-trivial dominated splitting Eoplus F, then one of the two bundles is hyperbolic: either E is contracted or F is expanded.In the proofs of the main results, we construct several perturbations which are not simple applications of the connecting lemmas. In fact, one has to apply the connecting lemma several (even infinitely many) times. We will give the detailed explanations of the multi-connecting processes in Chapter 3.
|
4 |
Ergodicité stable et mesures physiques pour des systèmes dynamiques faiblement hyperboliques / Stable ergodicity and physical measures for weakly hyperbolic dynamical systemsObata, Davi dos Anjos 17 December 2019 (has links)
Dans cette thèse, nous étudions les sujets suivants :- la stabilité ergodique pour les systèmes conservatifs ;- la généricité de l'existence d'exposants positifs pour certains produits tordus avec fibres de dimension deux ;- rigidité des mesures $u$-Gibbs pour certains systèmes partiellement hyperboliques ;- la transitivité robuste.Nous donnons une preuve de la stabilité ergodique pour certains systèmes partiellement hyperboliques sans utiliser l'accessibilité. Ces systèmes ont été introduits par Pierre Berger et Pablo Carrasco, et ils ont les propriétés suivantes : ils possèdent une direction centrale bidimensionnelle ; ils sont non-uniformément hyperboliques avec un exposant positif et un exposant négatif le long de la direction centrale pour presque tout point, et la décomposition d'Oseledets n'est pas dominée.Dans un autre travail, nous donnons des critères de stabilité ergodique pour des systèmes ayant une décomposition dominée. En particulier, nous explorons la notion d'hyperbolicité par chaîne introduite par Sylvain Crovisier et Enrique Pujals. À l'aide de cette notion, nous donnons des critères explicites de stabilité ergodique et nous donnons quelques applications.Dans un travail commun avec Mauricio Poletti, nous prouvons que le produit aléatoire de difféomorphismes de surface conservatifs possède génériquement une région avec des exposants positifs. Nos résultats s'appliquent également aux produits tordus plus généraux.Nous étudions également les perturbations dissipatives de l'exemple de Berger-Carrasco. Nous classifions toutes les mesures $u$-Gibbs qui peuvent apparaître dans un voisinage de l'exemple. Dans ce voisinage, nous prouvons que toute mesure $u$-Gibbs est soit l'unique mesure SRB du système, soit la désintégration dans le feuilletage central est atomique. Dans un travail commun avec Pablo Carrasco, nous prouvons que cet exemple est robustement transitif (en fait robustement topologiquement mélangeant). / In this thesis we study the following topics:-stable ergodicity for conservative systems;-genericity of the existence of positive exponents for some skew products with two dimensional fibers;-rigidity of $u$-Gibbs measure for certain partially hyperbolic systems;-robust transitivity.We give a proof of stable ergodicity for a certain partially hyperbolic system without using accessibility. This system was introduced by Pierre Berger and Pablo Carrasco, and it has the following properties: it has a two dimensional center direction; it is non-uniformly hyperbolic having both a positive and a negative exponent along the center for almost every point, and the Oseledets decomposition is not dominated.In a different work, we find criteria of stable ergodicity for systems with a dominated splitting. In particular, we explore the notion of chain-hyperbolicity introduced by Sylvain Crovisier and Enrique Pujals. With this notion we give explicit criteria of stable ergodicity, and we give some applications.In a joint work with Mauricio Poletti, we prove that the random product of conservative surface diffeomorphisms generically has a region with positive exponents. Our results also hold for more general skew products.We also study dissipative perturbations of the Berger-Carrasco example. We classify all the $u$-Gibbs measures that may appear inside a neighborhood of the example. In this neighborhood, we prove that any $u$-Gibbs measure is either the unique SRB measure of the system or it has atomic disintegration along the center foliation. In a joint work with Pablo Carrasco, we prove that this example is robustly transitive (indeed robustly topologically mixing).
|
Page generated in 0.1043 seconds