Spelling suggestions: "subject:"data aggregation anda interpretation"" "subject:"data aggregation ando interpretation""
1 |
Database centric software test management framework for test metricsPleehajinda, Parawee 06 November 2015 (has links) (PDF)
Big amounts of test data generated by the current used software testing tools (QA-C/QA-C++ and Cantata) contain a variety of different values. The variances cause enormous challenges in data aggregation and interpretation that directly affect generation of test metrics. Due to the circumstance of data processing, this master thesis introduces a database-centric test management framework for test metrics aims at centrally handling the big data as well as facilitating the generation of test metrics. Each test result will be individually parsed to be a particular format before being stored in a centralized database. A friendly front-end user interface is connected and synchronized with the database that allows authorized users to interact with the stored data. With a granularity tracking mechanism, any stored data will be systematically located and programmatically interpreted by a test metrics generator to create various kinds of high-quality test metrics. The automatization of the framework is driven by Jenkins CI to automatically and periodically performing the sequential operations. The technology greatly and effectively optimizes and reduces effort in the development, as well as enhance the performance of the software testing processes. In this research, the framework is only started at managing the testing processes on software-unit level. However, because of the independence of the database from levels of software testing, it could also be expanded to support software development at any level.
|
2 |
Database centric software test management framework for test metricsPleehajinda, Parawee 13 July 2015 (has links)
Big amounts of test data generated by the current used software testing tools (QA-C/QA-C++ and Cantata) contain a variety of different values. The variances cause enormous challenges in data aggregation and interpretation that directly affect generation of test metrics. Due to the circumstance of data processing, this master thesis introduces a database-centric test management framework for test metrics aims at centrally handling the big data as well as facilitating the generation of test metrics. Each test result will be individually parsed to be a particular format before being stored in a centralized database. A friendly front-end user interface is connected and synchronized with the database that allows authorized users to interact with the stored data. With a granularity tracking mechanism, any stored data will be systematically located and programmatically interpreted by a test metrics generator to create various kinds of high-quality test metrics. The automatization of the framework is driven by Jenkins CI to automatically and periodically performing the sequential operations. The technology greatly and effectively optimizes and reduces effort in the development, as well as enhance the performance of the software testing processes. In this research, the framework is only started at managing the testing processes on software-unit level. However, because of the independence of the database from levels of software testing, it could also be expanded to support software development at any level.
|
Page generated in 0.209 seconds