• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation and Synchronization for Aeronautical Telemetry

Shaw, Christopher G. 14 March 2014 (has links) (PDF)
Aeronautical telemetry systems have historically been implemented with constant envelope modulations like CPM. Shifts in system constraints including reduced available bandwidth and increased throughput demands have caused many in the field to reevaluate traditional methods and design practices. This work examines the costs and benefits of using APSK for aeronautical telemetry instead of CPM. Variable rate turbo codes are used to improve the power efficiency of 16- and 32-APSK. Spectral regrowth in nonlinear power amplifiers when driven by non-constant envelope modulation is also considered. Simulation results show the improved spectral efficiency of this modulation scheme over those currently defined in telemetry standards. Additionally, the impact of transitioning from continuous transmission to burst-mode is considered. Synchronization loops are ineffective in burst-mode communication. Data-aided feed forward algorithms can be used to estimate offsets in carrier phase, frequency, and symbol timing between the transmitter and the receiver. If a data-aided algorithm is used, a portion of the transmitted signal is devoted to a known sequence of pilot symbols. Optimum pilot sequences for the three synchronization parameters are obtained analytically and numerically for different system constraints. The alternating sequence is shown to be optimal given a peak power constraint. Alternatively, synchronization can be accomplished using blind algorithms that do not rely on a priori knowledge of a pilot sequence. If blind algorithms are used, the observation interval can be longer than for data-aided algorithms. There are combinations of pilot sequence length and packet length where data-aided algorithms perform better than blind algorithms and vice versa. The conclusion is that a sequential arrangement of blind algorithms operating over an entire burst performs better than a CRB-achieving data-aided algorithm operating over a short pilot sequence.
2

Design and prototyping of indoor positioning systems for Internet-of-Things sensor networks

Shakoori Moghadam Monfared, Shaghayegh 04 January 2021 (has links) (PDF)
Accurate indoor positioning of narrowband Internet-of-Things (IoT) sensors has drawn more attention in recent years. The introduction of Bluetooth Low Energy (BLE) technology is one of the latest developments of IoT and especially applicable for Ultra-Low Power (ULP) applications. BLE is an attractive technology for indoor positioning systems because of its low-cost deployment and reasonable accuracy. Efficient indoor positioning can be achieved by deducing the sensor position from the estimated signal Angle-of-Arrival (AoA) at multiple anchors. An anchor is a base station of known position and equipped with a narrowband multi-antenna array. However, the design and implementation of indoor positioning systems based on AoA measurements involve multiple challenges. The first part of this thesis mainly addresses the impact of hardware impairments on the accuracy of AoA measurements. In practice, the subspace-based algorithms such as Multiple Signal Classification (MUSIC) suffer from sensitivity to array calibration errors coming from hardware imperfections. A detailed experimental implementation is performed using a Software Defined Radio (SDR) platform to precisely evaluate the accuracy of AoA measurements. For this purpose, a new Over-the-Air (OTA) calibration method is proposed and the array calibration error is investigated. The experimental results are compared with the theoretical analysis. These results show that array calibration errors can cause some degrees of uncertainty in AoA estimation. Moreover, we propose iterative positioning algorithms based on AoA measurements for low capacity IoT sensors with high accuracy and fair computational complexity. Efficient positioning accuracy is obtained by iterating between the angle and position estimation steps. We first develop a Data-Aided Maximum a Posteriori (DA- MAP) estimator based on the preamble of the transmitted signal. DA-MAP estimator relies on the knowledge of the transmitted signal which makes it impractical for narrowband communications where the preamble is short. For this reason, a Non-Data- Aided Maximum a Posteriori (NDA-MAP) estimator is developed to improve the AoA accuracy. The iterative positioning algorithms are therefore classified as Data-Aided Iterative (DA-It) and Non-Data-Aided Iterative (NDA-It) depending on the knowledge of the transmitted signal that is used for estimation. Both numerical and experimental analyses are carried out to evaluate the performance of the proposed algorithms. The results show that DA-MAP and NDA-MAP estimators are more accurate than MUSIC. The results also show that DA-It comes very close to the performance of the optimal approach that directly estimates the position based on the observation of the received signal, known as Direct Position Estimation (DPE). Furthermore, the NDA-It algorithm significantly outperforms the DA-It because it can use a much higher number of samples; however, it needs more iterations to converge. In addition, we evaluate the computational savings achieved by the iterative schemes compared to DPE through a detailed complexity analysis. Finally, we investigate the performance degradation of the proposed iterative algorithms due to the impact of multipath and NLOS propagation in indoor environments. Therefore, we develop an enhanced iterative positioning algorithm with an anchor selection method in order to identify and exclude NLOS anchors. The numerical results show that applying the anchor selection strategy significantly improves the positioning accuracy in indoor environments. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.1308 seconds