Spelling suggestions: "subject:"dauerhafte"" "subject:"dauerhaften""
21 |
Beiträge zum 61. Forschungskolloquium mit 9. Jahrestagung des DAfStb: 26./27. September 2022, Technische Universität DresdenCurbach, Manfred, Marx, Steffen, Mechtcherine, Viktor 02 November 2022 (has links)
2022 fanden die 9. Jahrestagung des Deutschen Ausschusses für Stahlbeton (DAfStb) sowie das 61. DAfStb-Forschungskolloquium am 26. und 27. September in Dresden direkt im Vorfeld der 14. Carbon- und Textilbetontage statt. Gastgeber waren die Institute für Baustoffe (IfB) und Massivbau (IMB) der Technischen Universität Dresden.
Thematische Schwerpunkte waren Impaktbelastungen, Ingenieurbau, Ermüdung und Dauerhaftigkeit, Frischbeton und Rheologie, additive Fertigung und Sensorik sowie Carbonbeton. Der vorliegende Tagungsband enthält alle Beiträge in deutscher oder englischer Sprache.:Themenschwerpunkt Impakt
Cesare Signorini, Viktor Mechtcherine: Mineral-bonded composites for enhanced structural impact safety: The vision of the DFG GRK 2250
Ahmed Tawfik, Viktor Mechtcherine: On the shear behavior of mineral-bonded composites under impact loading
Lena Leicht: Charakterisierung von mineralisch gebundenen Kompositen zur Impaktdämpfung
Franz Bracklow: Rückseitige Verstärkung von Stahlbetonplatten unter Impaktbeanspruchung
Themenschwerpunkt Ingenieurbau
Steffen Marx: Ingenieurbau im Bestand
Conrad Pelka: Sanierung von Gewölbebrücken
Max Herbers: Langzeitverformung semi-integraler Talbrücken – Messung und Simulation
Fabian Klein: Modellierung der Torsionstragfähigkeit segmentierter Betontürme auf Basis der Wölbtheorie dünnwandiger Stäbe
Jan-Hauke Bartels: Robuste, lebensdauerumfassende Monitoringkonzepte für Offshore-Windenergieanlagen
Themenschwerpunkt Ermüdung und Dauerhaftigkeit
Dominik Junger, Viktor Mechtcherine: Ermüdungsverhalten von hochduktilem Kurzfaserbeton
Raúl Beltrán: Untersuchung von ermüdungsbedingten Veränderungen der Ultraschallgeschwindigkeit in Beton
Marc Koschemann: Rissbreitenentwicklung unter Langzeitbelastung anhand lokaler Verbundbeziehungen
Daniel Gebauer: Rissbildung und Rissbreitenentwicklung bei Stahlbetonbauteilen unter verformungsinduziertem Zwang
Michaela Reichardt, Steffen Müller, Viktor Mechtcherine: Erhöhung der Dauerhaftigkeit von Wasserbauwerken durch faserbewehrte, zementgebundene Komposite
Themenschwerpunkt Frischbeton und Rheologie
Rolf Breitenbücher, Udo Wiens, Mirsada Omercic: Wandel im Betonbau – Aktuelle Herausforderungen
Daniil Mikhalev, Viktor Mechtcherine, Dario Cotardo, Michael Haist: Pumpverhalten und Blockierungsneigung von Beton: Erkenntnisse aus Großversuchen
Irina Ivanova, Silvia Reißig, Viktor Mechtcherine: Vergleich von Bewertungsmethoden für die rheologischen Eigenschaften von frisch gedrucktem Beton
Slava Markin, Viktor Mechtcherine: Rissbildung in 3D-gedruckten Betonelementen infolge plastischen Schwindens: Ursachen und Quantifizierungsmethoden
Steffen Müller, Viktor Mechtcherine: Alternative mineralische Baustoffe – Potentiale und Eigenschaften
Themenschwerpunkt Additive Fertigung und Sensorik
Viktor Mechtcherine: Additive Fertigung mit Beton
Tobias Neef, Viktor Mechtcherine: Additiv gefertigter Carbonbeton mit mineralischer Tränkung der Garne
Egor Ivaniuk, Viktor Mechtcherine: Formwork-free, continuous production of variable frame elements for modular shell structures
Markus Taubert, Viktor Mechtcherine: 3D-druckbarer Normalbeton mit grober Gesteinskörnung
Sebastian Hegler, Marco Liebscher, Viktor Mechtcherine, Dirk Plettemeier: Rissdetektion und -lokalisierung in Betonstrukturen mittels Auswertung elektromagnetischer Hochfrequenzwellen
Themenschwerpunkt Carbonbeton
Norbert Will: DAfStb-Richtlinie „Betonbauteile mit Nichtmetallischer Bewehrung“ – Von Forschung und Pilotprojekten zum Regelwerk
Nazaib Ur Rehman, Harald Michler: Existing codes and guidelines for durability design of FRP reinforcement
Peter Betz: Carbonbeton unter Druck – Einfluss von Querdruck und Querzug
Enrico Baumgärtel: Untersuchung von Stäben und Gelegen aus rezyklierten Carbonfasern
Iurii Vakaliuk: Use of pervading internal shell-type substructures to dissolve compact components / 2022, the 9th Annual Conference of the Deutscher Ausschusses für Stahlbeton (German Committee for Reinforced Concrete, DAfStb) and the 61st DAfStb Research Colloquium took place on 26 and 27 September in Dresden directly in the run-up to the 14th Carbon and Textile Concrete Days. It was hosted by the Institutes for Building Materials (IfB) and Concrete Structures (IMB) of the Technische Universität Dresden.
The main topics were impact loads, civil engineering, fatigue and durability, fresh concrete and rheology, additive manufacturing and sensor technology as well as carbon reinforced concrete. The present conference proceedings contain all contributions in German or English.:Themenschwerpunkt Impakt
Cesare Signorini, Viktor Mechtcherine: Mineral-bonded composites for enhanced structural impact safety: The vision of the DFG GRK 2250
Ahmed Tawfik, Viktor Mechtcherine: On the shear behavior of mineral-bonded composites under impact loading
Lena Leicht: Charakterisierung von mineralisch gebundenen Kompositen zur Impaktdämpfung
Franz Bracklow: Rückseitige Verstärkung von Stahlbetonplatten unter Impaktbeanspruchung
Themenschwerpunkt Ingenieurbau
Steffen Marx: Ingenieurbau im Bestand
Conrad Pelka: Sanierung von Gewölbebrücken
Max Herbers: Langzeitverformung semi-integraler Talbrücken – Messung und Simulation
Fabian Klein: Modellierung der Torsionstragfähigkeit segmentierter Betontürme auf Basis der Wölbtheorie dünnwandiger Stäbe
Jan-Hauke Bartels: Robuste, lebensdauerumfassende Monitoringkonzepte für Offshore-Windenergieanlagen
Themenschwerpunkt Ermüdung und Dauerhaftigkeit
Dominik Junger, Viktor Mechtcherine: Ermüdungsverhalten von hochduktilem Kurzfaserbeton
Raúl Beltrán: Untersuchung von ermüdungsbedingten Veränderungen der Ultraschallgeschwindigkeit in Beton
Marc Koschemann: Rissbreitenentwicklung unter Langzeitbelastung anhand lokaler Verbundbeziehungen
Daniel Gebauer: Rissbildung und Rissbreitenentwicklung bei Stahlbetonbauteilen unter verformungsinduziertem Zwang
Michaela Reichardt, Steffen Müller, Viktor Mechtcherine: Erhöhung der Dauerhaftigkeit von Wasserbauwerken durch faserbewehrte, zementgebundene Komposite
Themenschwerpunkt Frischbeton und Rheologie
Rolf Breitenbücher, Udo Wiens, Mirsada Omercic: Wandel im Betonbau – Aktuelle Herausforderungen
Daniil Mikhalev, Viktor Mechtcherine, Dario Cotardo, Michael Haist: Pumpverhalten und Blockierungsneigung von Beton: Erkenntnisse aus Großversuchen
Irina Ivanova, Silvia Reißig, Viktor Mechtcherine: Vergleich von Bewertungsmethoden für die rheologischen Eigenschaften von frisch gedrucktem Beton
Slava Markin, Viktor Mechtcherine: Rissbildung in 3D-gedruckten Betonelementen infolge plastischen Schwindens: Ursachen und Quantifizierungsmethoden
Steffen Müller, Viktor Mechtcherine: Alternative mineralische Baustoffe – Potentiale und Eigenschaften
Themenschwerpunkt Additive Fertigung und Sensorik
Viktor Mechtcherine: Additive Fertigung mit Beton
Tobias Neef, Viktor Mechtcherine: Additiv gefertigter Carbonbeton mit mineralischer Tränkung der Garne
Egor Ivaniuk, Viktor Mechtcherine: Formwork-free, continuous production of variable frame elements for modular shell structures
Markus Taubert, Viktor Mechtcherine: 3D-druckbarer Normalbeton mit grober Gesteinskörnung
Sebastian Hegler, Marco Liebscher, Viktor Mechtcherine, Dirk Plettemeier: Rissdetektion und -lokalisierung in Betonstrukturen mittels Auswertung elektromagnetischer Hochfrequenzwellen
Themenschwerpunkt Carbonbeton
Norbert Will: DAfStb-Richtlinie „Betonbauteile mit Nichtmetallischer Bewehrung“ – Von Forschung und Pilotprojekten zum Regelwerk
Nazaib Ur Rehman, Harald Michler: Existing codes and guidelines for durability design of FRP reinforcement
Peter Betz: Carbonbeton unter Druck – Einfluss von Querdruck und Querzug
Enrico Baumgärtel: Untersuchung von Stäben und Gelegen aus rezyklierten Carbonfasern
Iurii Vakaliuk: Use of pervading internal shell-type substructures to dissolve compact components
|
22 |
Technological improvement of Portuguese Pine wood by modificationBarroso Lopes, Duarte 26 August 2013 (has links)
Das Ziel der Arbeit „The Technological improvement of Portuguese pinewood by chemical modification” bestand darin, die Charakteristiken des Holzes der See-Kiefer (Pinus pinaster Ait.) und den Einfluss der chemischen Modifizierung hinsichtlich des Widerstandes gegen Meeresorganismen, sowie ihrer physikalischen und mechanischen Eigenschaften zu untersuchen. Vier Modifizierungstypen wurden getestet: 1,3-Dimethylol-4,5-dihydroxyethylen-Harnstoff (DMDHEU), N-Methylol-Melamine (MMF), Tetra-alkoxysilane (TEOS) und Wachs.
Diese Arbeit besteht aus zwei Teilen: eine vorläufige und eine Haupt-Studie. In ersterer wurde eine Vielzahl von Materialeigenschaften untersucht - physikalische und mechanische Eigenschaften und ihre Wechselwirkungen. Besonderes Augenmerk wurde auf die Resistenz gegenüber Meeresorganismen gelegt, wobei die Rolle der Härte, der Form der Proben sowie der Toxizität der Chemikalien untersucht wurde.
Im zweiten Teil der Arbeit wurde eine ausführliche Studie zum Thema Kriechen durchgeführt. Art und Grad der Modifizierung wurden in Abhängigkeit von der Belastung, von verschiedenen Umgebungsbedingungen und vom mechano-sorptiven Effekt evaluiert.
Obwohl die Steifigkeit nicht signifikant verschieden war, traten Unterschiede in den anderen Eigenschaften auf. Einerseits waren die Anti-Quellungs-Effizienz und Steifigkeit-Stabilisierung erhöht. Andererseits waren die Bruchschlagarbeit und die Gleichgewichtsfeuchte signifikant durch Zellwand-Modifizierung (DMDHEU und MMF-Harz) reduziert, wobei eine enge Wechselbeziehung zwischen letzteren Variablen beobachtet wurde.
Unter hohem Belastungsgrad oder unter dem Einfluss des mechano-sorptiven Effekts war für das modifizierte Holz mit Zellwandreaktion (DMDHEU and MMF) das Ausmaß des Kriechens geringer als das des unmodifiziertem Holzes. Für beide Arten von Harz wurde das relative Kriechen deutlich verringert, trotz unterschiedlicher Veränderungen in der Ausgleichsfeuchte, Steifigkeit Stabilisierung und Festigkeit. Die Anti-Kriech-Effizienz zeigte eine enge Korrelation mit der Abnahme der Gleichgewichtsfeuchte, der Anti-Quell-Effizienz und der Steifigkeits-Stabilisationseffizienz. Die lumen-füllende Modifizierung mit TEOS-Lösung hatte weder einen Einfluss auf den Kriech-Faktor noch auf die Gleichgewichtsfeuchte und die Steifigkeits-Stabilisationseffizienz.
Bei den Meerwasseruntersuchungen waren die wichtigsten Schlussfolgerungen, dass die Härte und die Form der Proben keinen Einfluss auf die Resistenz gegenüber einem Befall durch die Meerwasser-Bohrschädlinge (Limnoriden und Terediniden) haben. Lumen-füllende Modifizierungen (TEOS und Wachs) hatten keine Wirkung hinsichtlich der Resistenz gegen Meerwasser-Bohrschädlinge. Hölzer, die mit Kondensationsharzen (DMDHEU und MMF) modifiziert waren, waren von einem Befall mit Limnoriden nicht betroffen. Aber nur DMDHEU mit einem Minimum an Modifizierung war geeignet, um einen Befall durch Terediniden über eine Expositionsdauer von 3 Jahren zu verhindern.
Die Verwendung von modifiziertem Holz als Baumaterial für nicht-tragende Bauteile wie Anwendungen in Feuchträumen, Wandfassaden oder Gartenmöbeln ist bekannt. Diese Untersuchung unterstützt die Ausweitung seiner Anwendung für tragende Bauteile, besonders wenn das Design durch die Möglichkeit von Deformation bestimmt wird, die seine Funktionsfähigkeit einschränkt. Deshalb müssen das Versprödungsverhalten, insbesondere bei der Zellwand-Modifizierung mit DMDHEU, und die Designmöglichkeiten für mechanische Verbindungen bestimmt werden, um die Anwendungsmöglichkeiten des modifizierten Holzes als tragende Komponente auszuweiten, bei denen oft der Grenzzustand der Tragfähigkeit das Design der strukturellen Komponenten bestimmt.
|
23 |
Spannglasträger – Glasträger mit vorgespannter Bewehrung / Spannglass Beams – Glass Beams with Post-Tensioned ReinforcementEngelmann, Michael 17 October 2017 (has links) (PDF)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen.
Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren.
Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen. / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability.
This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses.
Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.
|
24 |
Spannglasträger – Glasträger mit vorgespannter BewehrungEngelmann, Michael 24 August 2017 (has links)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen.
Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren.
Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen.:1 Einleitung
1.1 Problemstellung und Motivation
1.2 Zielsetzung
1.3 Vorgehensweise
1.4 Abgrenzung
2 Analogiebetrachtung
2.1 Zielsetzung
2.2 Anwendungsbereich
2.3 Begriffe
2.3.1 Bewehrte und hybride Glastragwerke
2.3.2 Thermische und mechanische Vorspannung
2.3.3 Spanngliedkonstruktion und Spannverfahren
2.3.4 Lage und Verlauf des Spanngliedes
2.3.5 Weitere Begriffe
2.4 Grundlagen der Tragwerksplanung
2.5 Baustoffe
2.5.1 Festigkeit
2.5.2 Elastische Formänderungseigenschaften
2.5.3 Kriechen und Schwinden
2.5.4 Bewehrungsmaterial
2.5.5 Komponenten von Spannsystemen
2.5.6 Querschnittsgestaltung
2.6 Dauerhaftigkeit
2.7 Schnittgrößenermittlung
2.7.1 Allgemeines
2.7.2 Imperfektionen
2.7.3 Idealisierung
2.7.4 Lineare Berechnung
2.7.5 Nichtlineare Berechnung
2.7.6 Zeitabhängigkeit der Vorspannkraft
2.7.7 Vorspannung während der Berechnung
2.8 Grenzzustände und Nachweise
2.8.1 Grenzzustand der Tragfähigkeit
2.8.2 Grenzzustand der Gebrauchstauglichkeit
2.8.3 Nachweis der Resttragfähigkeit
2.9 Bewehrungs- und Konstruktionsregeln
2.10 Zusammenfassung
3 Experimentelle Untersuchungen
3.1 Zielsetzung
3.2 Prüfkörper – Konstruktion und Materialien
3.3 Tragverhalten unter kurzzeitiger Beanspruchung
3.3.1 Prüfkörper
3.3.2 Versuchseinrichtung
3.3.3 Untersuchungsverfahren und -bedingungen
3.3.4 Analyse- und Auswertungsverfahren
3.3.5 Ergebnisse und Ergebnisdiskussion
3.3.6 Folgerungen und Zusammenfassung
3.4 Tragverhalten unter Dauerlast
3.4.1 Prüfkörper
3.4.2 Versuchseinrichtung
3.4.3 Untersuchungsverfahren und -bedingungen
3.4.4 Analyse- und Auswertungsverfahren
3.4.5 Ergebnisse und Ergebnisdiskussion
3.4.6 Folgerungen und Zusammenfassung
3.5 Resttragfähigkeit
3.5.1 Prüfkörper
3.5.2 Versuchseinrichtung
3.5.3 Untersuchungsverfahren und -bedingungen
3.5.4 Analyse- und Auswertungsverfahren
3.5.5 Ergebnisse und Ergebnisdiskussion
3.5.6 Folgerungen und Zusammenfassung
3.6 Tragverhalten unter Temperaturbelastung
3.6.1 Prüfkörper
3.6.2 Versuchseinrichtung
3.6.3 Untersuchungsverfahren und -bedingungen
3.6.4 Analyse- und Auswertungsverfahren
3.6.5 Ergebnisse und Ergebnisdiskussion
3.6.6 Folgerungen und Zusammenfassung
3.7 Zusammenfassung
4 Numerische Untersuchungen
4.1 Zielsetzung
4.2 Modellbeschreibung
4.2.1 Systembeschreibung
4.2.2 Einwirkungen
4.2.3 Berechnung
4.3 Ergebnisse und Ergebnisdiskussion
4.3.1 Vergleich mit dem analytischen Modell
4.3.2 Modellierung der Umlenkung
4.3.3 Einfluss der Zwischenschicht
4.3.4 Auswahl eines Imperfektionswertes
4.3.5 Seilkraftverlust im Dauerversuch
4.4 Zusammenfassung
5 Diskussion
5.1 Zielsetzung
5.2 Tragverhalten unter kurzzeitiger Beanspruchung
5.2.1 Tragverhalten unter Vorspannbelastung
5.2.2 Trag- und Bruchverhalten unter Biegebelastung
5.2.3 Rissverhalten unter Biegebelastung
5.2.4 Spannungszuwachs in der Bewehrung
5.3 Tragverhalten unter Dauerbelastung
5.4 Resttragfähigkeit
5.5 Zusammenfassung
6 Konstruktive Empfehlungen
6.1 Zielsetzung
6.2 Teilprojekte
6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“
6.2.2 Spannglasbrücke – glasstec 2014
6.2.3 Fußgängerbrücke in Nara (Japan) 2015
6.3 Verankerungen
6.3.1 Tragfähigkeit der Verankerung
6.3.2 Seilkrafteinleitung
6.3.3 Toleranzausgleich
6.3.4 Neigungsausgleich
6.4 Vorspannverfahren
6.5 Umlenkpunkte
6.5.1 Geklotzte Umlenkpunkte
6.5.2 Geklebte Umlenkpunkte
6.6 Montage
6.7 Weiterführende Konstruktionen
6.7.1 Spannglasträger mit nachträglichem Verbund
6.7.2 Segmentbauweise
6.8 Zusammenfassung
7 Zusammenfassung und Ausblick
7.1 Zusammenfassung
7.2 Ausblick
8 Literatur
8.1 Fachbücher und Fachaufsätze
8.2 Normen und Richtlinien
Bezeichnungen
Abbildungsverzeichnis und -nachweis
Tabellenverzeichnis
A Analytische Schnittgrößenberechnung
B Kurzzeit-Biegeversuche
C Dauerversuche 1000 h
D Versuche zur Resttragfähigkeit
E Biegeversuche unter Temperaturlast
F SOFiSTiK Quelltext / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability.
This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses.
Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.:1 Einleitung
1.1 Problemstellung und Motivation
1.2 Zielsetzung
1.3 Vorgehensweise
1.4 Abgrenzung
2 Analogiebetrachtung
2.1 Zielsetzung
2.2 Anwendungsbereich
2.3 Begriffe
2.3.1 Bewehrte und hybride Glastragwerke
2.3.2 Thermische und mechanische Vorspannung
2.3.3 Spanngliedkonstruktion und Spannverfahren
2.3.4 Lage und Verlauf des Spanngliedes
2.3.5 Weitere Begriffe
2.4 Grundlagen der Tragwerksplanung
2.5 Baustoffe
2.5.1 Festigkeit
2.5.2 Elastische Formänderungseigenschaften
2.5.3 Kriechen und Schwinden
2.5.4 Bewehrungsmaterial
2.5.5 Komponenten von Spannsystemen
2.5.6 Querschnittsgestaltung
2.6 Dauerhaftigkeit
2.7 Schnittgrößenermittlung
2.7.1 Allgemeines
2.7.2 Imperfektionen
2.7.3 Idealisierung
2.7.4 Lineare Berechnung
2.7.5 Nichtlineare Berechnung
2.7.6 Zeitabhängigkeit der Vorspannkraft
2.7.7 Vorspannung während der Berechnung
2.8 Grenzzustände und Nachweise
2.8.1 Grenzzustand der Tragfähigkeit
2.8.2 Grenzzustand der Gebrauchstauglichkeit
2.8.3 Nachweis der Resttragfähigkeit
2.9 Bewehrungs- und Konstruktionsregeln
2.10 Zusammenfassung
3 Experimentelle Untersuchungen
3.1 Zielsetzung
3.2 Prüfkörper – Konstruktion und Materialien
3.3 Tragverhalten unter kurzzeitiger Beanspruchung
3.3.1 Prüfkörper
3.3.2 Versuchseinrichtung
3.3.3 Untersuchungsverfahren und -bedingungen
3.3.4 Analyse- und Auswertungsverfahren
3.3.5 Ergebnisse und Ergebnisdiskussion
3.3.6 Folgerungen und Zusammenfassung
3.4 Tragverhalten unter Dauerlast
3.4.1 Prüfkörper
3.4.2 Versuchseinrichtung
3.4.3 Untersuchungsverfahren und -bedingungen
3.4.4 Analyse- und Auswertungsverfahren
3.4.5 Ergebnisse und Ergebnisdiskussion
3.4.6 Folgerungen und Zusammenfassung
3.5 Resttragfähigkeit
3.5.1 Prüfkörper
3.5.2 Versuchseinrichtung
3.5.3 Untersuchungsverfahren und -bedingungen
3.5.4 Analyse- und Auswertungsverfahren
3.5.5 Ergebnisse und Ergebnisdiskussion
3.5.6 Folgerungen und Zusammenfassung
3.6 Tragverhalten unter Temperaturbelastung
3.6.1 Prüfkörper
3.6.2 Versuchseinrichtung
3.6.3 Untersuchungsverfahren und -bedingungen
3.6.4 Analyse- und Auswertungsverfahren
3.6.5 Ergebnisse und Ergebnisdiskussion
3.6.6 Folgerungen und Zusammenfassung
3.7 Zusammenfassung
4 Numerische Untersuchungen
4.1 Zielsetzung
4.2 Modellbeschreibung
4.2.1 Systembeschreibung
4.2.2 Einwirkungen
4.2.3 Berechnung
4.3 Ergebnisse und Ergebnisdiskussion
4.3.1 Vergleich mit dem analytischen Modell
4.3.2 Modellierung der Umlenkung
4.3.3 Einfluss der Zwischenschicht
4.3.4 Auswahl eines Imperfektionswertes
4.3.5 Seilkraftverlust im Dauerversuch
4.4 Zusammenfassung
5 Diskussion
5.1 Zielsetzung
5.2 Tragverhalten unter kurzzeitiger Beanspruchung
5.2.1 Tragverhalten unter Vorspannbelastung
5.2.2 Trag- und Bruchverhalten unter Biegebelastung
5.2.3 Rissverhalten unter Biegebelastung
5.2.4 Spannungszuwachs in der Bewehrung
5.3 Tragverhalten unter Dauerbelastung
5.4 Resttragfähigkeit
5.5 Zusammenfassung
6 Konstruktive Empfehlungen
6.1 Zielsetzung
6.2 Teilprojekte
6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“
6.2.2 Spannglasbrücke – glasstec 2014
6.2.3 Fußgängerbrücke in Nara (Japan) 2015
6.3 Verankerungen
6.3.1 Tragfähigkeit der Verankerung
6.3.2 Seilkrafteinleitung
6.3.3 Toleranzausgleich
6.3.4 Neigungsausgleich
6.4 Vorspannverfahren
6.5 Umlenkpunkte
6.5.1 Geklotzte Umlenkpunkte
6.5.2 Geklebte Umlenkpunkte
6.6 Montage
6.7 Weiterführende Konstruktionen
6.7.1 Spannglasträger mit nachträglichem Verbund
6.7.2 Segmentbauweise
6.8 Zusammenfassung
7 Zusammenfassung und Ausblick
7.1 Zusammenfassung
7.2 Ausblick
8 Literatur
8.1 Fachbücher und Fachaufsätze
8.2 Normen und Richtlinien
Bezeichnungen
Abbildungsverzeichnis und -nachweis
Tabellenverzeichnis
A Analytische Schnittgrößenberechnung
B Kurzzeit-Biegeversuche
C Dauerversuche 1000 h
D Versuche zur Resttragfähigkeit
E Biegeversuche unter Temperaturlast
F SOFiSTiK Quelltext
|
Page generated in 0.0589 seconds