• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abschätzung des Schwingungsverhaltens von Konstruktionen mit zufälligen Systemeigenschaften

Gehrmann, Jutta. January 2001 (has links) (PDF)
München, Techn. Universiẗat, Diss., 2001.
2

Temperature induced deformations in match-cast segments and their effects on precast segmental bridges /

Abendeh, Raʼed. January 2006 (has links)
Zugl.: Hamburg, Techn. University, Diss., 2006.
3

A method for analyzing structures with spatially distributed uncertainties for dynamics and buckling

Gangadhar, Machina January 2006 (has links)
Zugl.: Magdeburg, Univ., Diss., 2006
4

En sjukligt gul* färg. : * eller grönaktig

Heidi, Edström January 2021 (has links)
Med utgångspunkt i det konstnärliga konceptet knöl söker Heidi i den här uppsatsen bearbeta det djupa och komplicerade förhållandet mellan kaos och kontroll. Genom att röra sig fritt mellan sin personliga erfarenhet, och såväl historiska som samtida skildringar, målar hon här upp en större bild av den känsliga relationen mellan människans sökande efter rationell kunskap och den ständigt närvarande rädslan. Oron för att drabbas av olycka och katastrofer, sjukdom och död. Med stöd i sin egen process, andra konstnärer och relaterade koncept (så som Julea Kristevas abjekt och den gamla föreställningen om monstret) argumenterar Heidi för hur det som bryter av mot våra förväntningar om det rena, sanna och perfekta inte bara bör betraktas som något oönskat. Utan hur dessa avvikelser faktiskt skulle kunna utgöra själva förutsättningen för ett verkligt levande liv…
5

Einfluss fertigungsbedingter Imperfektionen auf die Schwingfestigkeit von FKV-Schalenstrukturen in Sandwichbauweise

Nielow, Dustin 11 April 2022 (has links)
Rotorblätter von Windenergieanlagen (WEA) weisen häufig lange vor dem Erreichen der prognostizierten Lebensdauer von 20 bis 30 Jahren Risse in der Blattschale auf. Die Folge sind aufwendige Reparaturen am installierten und schwer zugänglichen Rotorblatt und der kostenintensive Nutzungsausfall durch den Stillstand der WEA. Als mögliche Initiatoren für die Schäden in der Blattschale der Rotorblätter gelten fertigungsbedingte Imperfektionen. Für die Untersuchung des Einflusses dieser Imperfektionen auf das Ermüdungsverhalten der Rotorblätter wurde an der BAM (Bundesanstalt für Materialforschung und -prüfung) ein Prüfstand für statische und zyklische Versuche von Schalensegmenten im intermediate scale entwickelt und betrieben. Die untersuchten Schalensegmente in Sandwichbauweise sind der Rotorblattschale von WEA im Hinblick auf die Strukturmechanik, die Halbzeuge, den Laminataufbau und dem eingesetzten Fertigungsverfahren ähnlich. Als Imperfektionen wurden verschiedenen Variationen von Lagenstößen in die Hautlagen und Schaumstöße mit Breitenvariation in den Stützkern reproduzierbar eingebracht. Die Überwachung des Schädigungszustandes während der Schwingversuche unter realistischen Lastszenarien erfolgt über eine kombinierte in situ Schädigungsüberwachung mittels passiver Thermografie und Felddehnungsmessung. Mit den durchgeführten Schwingversuchen, der begleitenden Überwachung des Schädigungszustandes sowie dem validierten FEM-Modell ließen sich die Schadensinitiation und die signifikante Reduktion der Lebensdauer durch die eingebrachten Imperfektionen zweifelsfrei nachweisen. Die abgeleiteten Designregeln liefern für die Ingenieurpraxis wichtige Konstruktionshinweise und unterstützen die betriebssichere Auslegung von gekrümmten Sandwichkonstruktionen wie beispielsweise WEA-Rotorblätter.:1 Einleitung 1.1 Motivation 1.2 Zielsetzung 2 Stand der Technik 2.1 Grundlagen FKV-Werkstoffe 2.2 Rotorblätter von Windenergieanlagen 2.2.1 Rotorblattfertigung im SCRIMP-Verfahren 2.2.2 Typische fertigungsbedingte Imperfektionen im Rotorblatt 2.2.3 Lasten am Rotorblatt 2.2.4 Rotorblattprüfung und Komponentenversuche 2.3. Schalentheorie von monolithischen und Sandwichstrukturen 2.3.1 Analytische Betrachtung orthotroper Schalen 2.3.2 Versagensverhalten von Sandwichstrukturen unter Druckbelastung 2.3.3 Analytische Beschreibung des Stabilitätsversagens von Sandwichstrukturen 2.4 Strukturverhalten von Sandwichstrukturen unter statischen und zyklischen Lasten 2.5 Versagenskriterium für monolithisches Laminat nach Puck 2.6 Ermüdungsverhalten monolithischer Winkel-Mehrschichtverbunde 2.7 Materialcharakterisierung der GFK-Decklagen 2.7.1 Statische Materialkennwerte der GFK-Decklagen 2.7.2 Schwingversuche zur Ermittlung der Wöhlerkurve der GFK-Decklagen 2.7.3 Lineare Schädigungsakkumulation zur Berechnung der Schadensbeiträge 2.7.4 Schädigungsmechanismen bei statischer Schub-Zug-Beanspruchung 2.7.5 Im RHV-Schwingversuch erfasste Schädigungsmechanismen 2.8 In situ Überwachung des Schädigungszustandes mittels zerstörungsfreier Prüfung 2.8.1 In situ Überwachung - Optische Felddehnungsmessung 2.8.2 In situ Überwachung – passive Thermografie 3 Versuchsplanung 3.1 Schalenprüfstand für Substrukturen-Versuche 3.1.1 Anforderungen an den Schalenprüfstand 3.1.2 Konstruktion und Umsetzung 3.1.3 Integrierte Zustandsüberwachung 3.2 Der Schalenprüfkörper für Substrukturen-Versuche 3.2.1 Schalenprüfkörper – Auslegung 3.2.2 Schalenprüfkörper - Fertigungsverfahren 3.2.3 Schalenprüfkörper - Eingebrachte Imperfektionen 4 Statische und zyklische Versuche an Schalenprüfkörpern 4.1 Statische Versuche an Schalenprüfkörpern 4.1.1 Mit der Felddehnungsmessung detektierte Prüfkörperverformung 4.1.2 Detektierte Z-Verschiebung mittels Felddehnungsmessung 4.1.3 Diskussion der detektierten Verformung des Schalenprüfkörpers 4.1.4 Fazit – statische Druckversuche an Sandwichschalen 4.2 Numerische Abbildung des Schalenprüfkörpers 4.2.1 Nichtlineare Stabilitätsanalyse - Schalenprüfkörper ohne Imperfektion 4.2.2 Validierung des im FEM-Schalenmodell modellierten komplexen Verformungsverhaltens unter statischer Axiallast 4.2.3 FEA – laminatschichtweise Analyse der Anstrengung (Zfb, Puck) 4.2.4 Diskussion FEM-Schalenmodell 4.3 Schwingversuche an Schalenprüfkörpern 4.3.1 Referenzprüfkörper – Einstufen-Schwingversuch 4.3.2 Referenzprüfkörper – Zweistufen-Schwingversuch 4.3.3 Referenzprüfkörper - lokaler Steifigkeitsabfall im Mehrstufen-Schwingversuch 4.3.4 Referenzprüfkörper: Fazit der Ein- und Mehrstufen-Schwingversuche 4.3.5 Zweistufen-Schwingversuche an Prüfkörpern mit Imperfektionen 4.3.6 Im Mehrstufen-Schwingversuch erreichte Lastspielzahlen 4.3.7 Nachweis der Schadensinitiierung - Ansatz zur erweiterten Auswertung der passiven Thermografie 5 Diskussion der Ergebnisse 5.1 Diskussion der statischen Schalenversuche 5.2 Diskussion der Schwingversuche von Schalenprüfköpern 5.2.1 Schadensakkumulationsprozess der Sandwich-Schalenprüfkörper unter Zug-Druck-Wechsellast 5.2.2 Lastspielzahlen: Vergleich Material- und Substrukturen-Versuche 5.2.3 Anstrengung: Vergleich Material- und Substrukturen-Versuche 5.2.4 Angewendete ZfP-Verfahren: Sichtprüfung, passive Thermografie und Felddehnungsmessung 5.3 Diskussion der Skalierung auf die Blattschale realer Rotorblätter 6 Ausblick 7 Zusammenfassung Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang
6

An Attempt Towards FE-Modelling of Fracture Propagation in Railway Wheels / Ett Försök till FE-Modellering av Sprickbildning i Järnvägshjul

Öhnander, Fred January 2018 (has links)
The demand for higher velocities and heavier axle loads for freight trains leads to higher forces on the railway wheels which in turn lead to an increase in stresses on and below the surface of the wheel-rail contact. By time, this induces wear on the wheels which consequently lead to higher maintenance costs and in some cases accidents. The ability to predict the evolution of wheel profiles due to uniform wear has been demonstrated with a rather accurate precision in most operational conditions. These wear models are based on wear coefficients and since they are not usually valid for real operational conditions, the models are generally calibrated against real-life scenarios in order to adjust the coefficients from test conditions to real-life lubrication conditions. This engineering approach can be useful in prediction of wear in systems where the materials and contact conditions do not vary. However, when addressing material development focused on reducing specific damage modes, the approach is of limited use because the obtained wear coefficients are not directly related to material properties. Therefore, attempts towards developing physical fracture propagation models that relates to the contact conditions and material properties have been made. The purpose has been to retrieve vital information about where a fracture initiates and how it propagates. In the long run, it is of great interest to be able to attain information about how a material particle is removed from the contact surface. Studies for this type of model was done in the 70’s and 80’s mainly with pin-disk experiments but has not been utilized in the specific field of wheel-rail contact. The thesis is part of the FR8RAIL project arranged by the European rail initiative Shift2Rail. Literature studies have been the basis for the thesis in order to gain vital insights into fracture mechanics and other related fields. The physical fracture propagation models have been constructed in the FE software Abaqus with the implementation of the XFEM. For the 2D model, the fracture initiates at the top of the implanted inclusion when the friction coefficient is  and propagates upwards a few elements. For , the fracture initiates at the right surface boundary where the pressure distribution and traction is applied. The fracture propagation angle increases relative to the surface as the friction coefficient value is increased. The fracture for the 3D model extends broader compared to the 2D model at the top of the inclusion in the case of . The fracture initiates at the same surface location as for the 2D model for . The fracture propagation is however non-existent due to convergence problems. The FE-models constructed are initial steps towards analysing the fracture propagation and closely related phenomena for a railway freight wheel in detail. At the end of the thesis, the simplified models give mainly information about the fracture initiation, propagation and its patterns. From this first phase, further adjustments and improvements can take place in order to eliminate the margins of error. In the long run, fully integrated models with further implementations such as detailed microstructure for the contact conditions, plastic behaviour for the material, and complete three-dimensional models can finally be employed. / Efterfrågan på högre hastigheter och tyngre axelbelastningar för godståg leder till högre krafter på järnvägshjulen som i sin tur leder till ökade spänningar på och under ytan vid hjul-räl-kontakten. Med tiden induceras slitage på hjulen som följaktligen leder till höga underhållskostnader och i vissa fall olyckor. Förmågan att förutse utvecklingen av hjulprofiler på grund av enhetligt slitage har visats kunna ske med en noggrann precision under de flesta driftsförhållanden. Dessa slitagemodeller bygger på slitagekoefficienter, och eftersom de vanligtvis inte är giltiga under realistiska driftsförhållanden är modellerna i allmänhet kalibrerade mot verkliga händelseförlopp för att justera koefficienterna från testförhållandena till realistiska smörjförhållanden. Detta tekniska tillvägagångssätt kan vara användbart vid prognos av slitage i system där material och kontaktförhållanden inte varierar. När man addresserar materialutveckling inriktad på att reducera specifika skadelägen är emellertid tillvägagångssättet av begränsad användning eftersom de erhållna slitagekoefficienterna inte är direkt relaterade till materialegenskaper. Därför har försök gjorts till att utveckla fysikaliska sprickbildningsmodeller som relateras till kontaktförhållanden och materialegenskaper. Syftet har varit att erhålla viktig information om var en spricka initieras och hur den fortskrider. I det långa loppet är det även av stor vikt att kunna erhålla information om hur en materialpartikel avlägsnas från kontaktytan. Studier för denna typ av modeller har gjorts på 70- och 80-talet i huvudsak med stift- och skivexperiment men har inte använts inom det specifika området för hjul-räl-kontakt. Avhandligen ingår i FR8RAIL-projektet som arrangeras av det europeiska järnvägsinitiativet Shift2Rail. Literaturstudier har varit grunden för avhandlingen för att få väsentlig insikt i frakturmekanik och andra relaterade områden. De fysiska sprickbildningsmodellerna har konstrueras i FE-mjukvaran Abaqus med XFEM som implementering. För 2D-modellen initieras sprickan överst vid den implanterade imperfektionen när friktionskoefficienten är  och propagerar uppåt några få element. För  initieras sprickan på högra ytgränsen där tryckfördelning och friktionskraft appliceras. Utbredningsvinkeln för sprickan ökar relativt till ytan då friktionskoefficienten ökar. Sprickan för 3D-modellen breder ut sig mer jämfört med 2D-modellen överst vid imperfektionen då . Sprickan initieras på samma ytplats som för 2D-modellen vid . Sprickbildningen är dock obefintlig på grund av konvergensproblem. De konstruerade FE-modellerna är initiala steg mot att analysera sprickutbredningen och närbesläktade fenomen för ett godstågs järnvägshjul i detalj. I slutet av avhandlingen ger de förenklade modellerna huvudsakligen information om sprickinitiering, utbredning och dess mönster. Ytterligare justeringar och förbättringar kan ske efter denna första fas i syfte att eliminera felmarginalerna. På lång sikt kan slutligen helt integrerande modeller med ytterligare implementeringar såsom detaljerad mikrostruktur för kontaktförhållandena, oelastiskt materialbeteende och kompletta tredimensionella modeller användas. / FR8RAIL
7

Spannglasträger – Glasträger mit vorgespannter Bewehrung / Spannglass Beams – Glass Beams with Post-Tensioned Reinforcement

Engelmann, Michael 17 October 2017 (has links) (PDF)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen. Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren. Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen. / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability. This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses. Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.
8

Spannglasträger – Glasträger mit vorgespannter Bewehrung

Engelmann, Michael 24 August 2017 (has links)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen. Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren. Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen.:1 Einleitung 1.1 Problemstellung und Motivation 1.2 Zielsetzung 1.3 Vorgehensweise 1.4 Abgrenzung 2 Analogiebetrachtung 2.1 Zielsetzung 2.2 Anwendungsbereich 2.3 Begriffe 2.3.1 Bewehrte und hybride Glastragwerke 2.3.2 Thermische und mechanische Vorspannung 2.3.3 Spanngliedkonstruktion und Spannverfahren 2.3.4 Lage und Verlauf des Spanngliedes 2.3.5 Weitere Begriffe 2.4 Grundlagen der Tragwerksplanung 2.5 Baustoffe 2.5.1 Festigkeit 2.5.2 Elastische Formänderungseigenschaften 2.5.3 Kriechen und Schwinden 2.5.4 Bewehrungsmaterial 2.5.5 Komponenten von Spannsystemen 2.5.6 Querschnittsgestaltung 2.6 Dauerhaftigkeit 2.7 Schnittgrößenermittlung 2.7.1 Allgemeines 2.7.2 Imperfektionen 2.7.3 Idealisierung 2.7.4 Lineare Berechnung 2.7.5 Nichtlineare Berechnung 2.7.6 Zeitabhängigkeit der Vorspannkraft 2.7.7 Vorspannung während der Berechnung 2.8 Grenzzustände und Nachweise 2.8.1 Grenzzustand der Tragfähigkeit 2.8.2 Grenzzustand der Gebrauchstauglichkeit 2.8.3 Nachweis der Resttragfähigkeit 2.9 Bewehrungs- und Konstruktionsregeln 2.10 Zusammenfassung 3 Experimentelle Untersuchungen 3.1 Zielsetzung 3.2 Prüfkörper – Konstruktion und Materialien 3.3 Tragverhalten unter kurzzeitiger Beanspruchung 3.3.1 Prüfkörper 3.3.2 Versuchseinrichtung 3.3.3 Untersuchungsverfahren und -bedingungen 3.3.4 Analyse- und Auswertungsverfahren 3.3.5 Ergebnisse und Ergebnisdiskussion 3.3.6 Folgerungen und Zusammenfassung 3.4 Tragverhalten unter Dauerlast 3.4.1 Prüfkörper 3.4.2 Versuchseinrichtung 3.4.3 Untersuchungsverfahren und -bedingungen 3.4.4 Analyse- und Auswertungsverfahren 3.4.5 Ergebnisse und Ergebnisdiskussion 3.4.6 Folgerungen und Zusammenfassung 3.5 Resttragfähigkeit 3.5.1 Prüfkörper 3.5.2 Versuchseinrichtung 3.5.3 Untersuchungsverfahren und -bedingungen 3.5.4 Analyse- und Auswertungsverfahren 3.5.5 Ergebnisse und Ergebnisdiskussion 3.5.6 Folgerungen und Zusammenfassung 3.6 Tragverhalten unter Temperaturbelastung 3.6.1 Prüfkörper 3.6.2 Versuchseinrichtung 3.6.3 Untersuchungsverfahren und -bedingungen 3.6.4 Analyse- und Auswertungsverfahren 3.6.5 Ergebnisse und Ergebnisdiskussion 3.6.6 Folgerungen und Zusammenfassung 3.7 Zusammenfassung 4 Numerische Untersuchungen 4.1 Zielsetzung 4.2 Modellbeschreibung 4.2.1 Systembeschreibung 4.2.2 Einwirkungen 4.2.3 Berechnung 4.3 Ergebnisse und Ergebnisdiskussion 4.3.1 Vergleich mit dem analytischen Modell 4.3.2 Modellierung der Umlenkung 4.3.3 Einfluss der Zwischenschicht 4.3.4 Auswahl eines Imperfektionswertes 4.3.5 Seilkraftverlust im Dauerversuch 4.4 Zusammenfassung 5 Diskussion 5.1 Zielsetzung 5.2 Tragverhalten unter kurzzeitiger Beanspruchung 5.2.1 Tragverhalten unter Vorspannbelastung 5.2.2 Trag- und Bruchverhalten unter Biegebelastung 5.2.3 Rissverhalten unter Biegebelastung 5.2.4 Spannungszuwachs in der Bewehrung 5.3 Tragverhalten unter Dauerbelastung 5.4 Resttragfähigkeit 5.5 Zusammenfassung 6 Konstruktive Empfehlungen 6.1 Zielsetzung 6.2 Teilprojekte 6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“ 6.2.2 Spannglasbrücke – glasstec 2014 6.2.3 Fußgängerbrücke in Nara (Japan) 2015 6.3 Verankerungen 6.3.1 Tragfähigkeit der Verankerung 6.3.2 Seilkrafteinleitung 6.3.3 Toleranzausgleich 6.3.4 Neigungsausgleich 6.4 Vorspannverfahren 6.5 Umlenkpunkte 6.5.1 Geklotzte Umlenkpunkte 6.5.2 Geklebte Umlenkpunkte 6.6 Montage 6.7 Weiterführende Konstruktionen 6.7.1 Spannglasträger mit nachträglichem Verbund 6.7.2 Segmentbauweise 6.8 Zusammenfassung 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick 8 Literatur 8.1 Fachbücher und Fachaufsätze 8.2 Normen und Richtlinien Bezeichnungen Abbildungsverzeichnis und -nachweis Tabellenverzeichnis A Analytische Schnittgrößenberechnung B Kurzzeit-Biegeversuche C Dauerversuche 1000 h D Versuche zur Resttragfähigkeit E Biegeversuche unter Temperaturlast F SOFiSTiK Quelltext / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability. This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses. Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.:1 Einleitung 1.1 Problemstellung und Motivation 1.2 Zielsetzung 1.3 Vorgehensweise 1.4 Abgrenzung 2 Analogiebetrachtung 2.1 Zielsetzung 2.2 Anwendungsbereich 2.3 Begriffe 2.3.1 Bewehrte und hybride Glastragwerke 2.3.2 Thermische und mechanische Vorspannung 2.3.3 Spanngliedkonstruktion und Spannverfahren 2.3.4 Lage und Verlauf des Spanngliedes 2.3.5 Weitere Begriffe 2.4 Grundlagen der Tragwerksplanung 2.5 Baustoffe 2.5.1 Festigkeit 2.5.2 Elastische Formänderungseigenschaften 2.5.3 Kriechen und Schwinden 2.5.4 Bewehrungsmaterial 2.5.5 Komponenten von Spannsystemen 2.5.6 Querschnittsgestaltung 2.6 Dauerhaftigkeit 2.7 Schnittgrößenermittlung 2.7.1 Allgemeines 2.7.2 Imperfektionen 2.7.3 Idealisierung 2.7.4 Lineare Berechnung 2.7.5 Nichtlineare Berechnung 2.7.6 Zeitabhängigkeit der Vorspannkraft 2.7.7 Vorspannung während der Berechnung 2.8 Grenzzustände und Nachweise 2.8.1 Grenzzustand der Tragfähigkeit 2.8.2 Grenzzustand der Gebrauchstauglichkeit 2.8.3 Nachweis der Resttragfähigkeit 2.9 Bewehrungs- und Konstruktionsregeln 2.10 Zusammenfassung 3 Experimentelle Untersuchungen 3.1 Zielsetzung 3.2 Prüfkörper – Konstruktion und Materialien 3.3 Tragverhalten unter kurzzeitiger Beanspruchung 3.3.1 Prüfkörper 3.3.2 Versuchseinrichtung 3.3.3 Untersuchungsverfahren und -bedingungen 3.3.4 Analyse- und Auswertungsverfahren 3.3.5 Ergebnisse und Ergebnisdiskussion 3.3.6 Folgerungen und Zusammenfassung 3.4 Tragverhalten unter Dauerlast 3.4.1 Prüfkörper 3.4.2 Versuchseinrichtung 3.4.3 Untersuchungsverfahren und -bedingungen 3.4.4 Analyse- und Auswertungsverfahren 3.4.5 Ergebnisse und Ergebnisdiskussion 3.4.6 Folgerungen und Zusammenfassung 3.5 Resttragfähigkeit 3.5.1 Prüfkörper 3.5.2 Versuchseinrichtung 3.5.3 Untersuchungsverfahren und -bedingungen 3.5.4 Analyse- und Auswertungsverfahren 3.5.5 Ergebnisse und Ergebnisdiskussion 3.5.6 Folgerungen und Zusammenfassung 3.6 Tragverhalten unter Temperaturbelastung 3.6.1 Prüfkörper 3.6.2 Versuchseinrichtung 3.6.3 Untersuchungsverfahren und -bedingungen 3.6.4 Analyse- und Auswertungsverfahren 3.6.5 Ergebnisse und Ergebnisdiskussion 3.6.6 Folgerungen und Zusammenfassung 3.7 Zusammenfassung 4 Numerische Untersuchungen 4.1 Zielsetzung 4.2 Modellbeschreibung 4.2.1 Systembeschreibung 4.2.2 Einwirkungen 4.2.3 Berechnung 4.3 Ergebnisse und Ergebnisdiskussion 4.3.1 Vergleich mit dem analytischen Modell 4.3.2 Modellierung der Umlenkung 4.3.3 Einfluss der Zwischenschicht 4.3.4 Auswahl eines Imperfektionswertes 4.3.5 Seilkraftverlust im Dauerversuch 4.4 Zusammenfassung 5 Diskussion 5.1 Zielsetzung 5.2 Tragverhalten unter kurzzeitiger Beanspruchung 5.2.1 Tragverhalten unter Vorspannbelastung 5.2.2 Trag- und Bruchverhalten unter Biegebelastung 5.2.3 Rissverhalten unter Biegebelastung 5.2.4 Spannungszuwachs in der Bewehrung 5.3 Tragverhalten unter Dauerbelastung 5.4 Resttragfähigkeit 5.5 Zusammenfassung 6 Konstruktive Empfehlungen 6.1 Zielsetzung 6.2 Teilprojekte 6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“ 6.2.2 Spannglasbrücke – glasstec 2014 6.2.3 Fußgängerbrücke in Nara (Japan) 2015 6.3 Verankerungen 6.3.1 Tragfähigkeit der Verankerung 6.3.2 Seilkrafteinleitung 6.3.3 Toleranzausgleich 6.3.4 Neigungsausgleich 6.4 Vorspannverfahren 6.5 Umlenkpunkte 6.5.1 Geklotzte Umlenkpunkte 6.5.2 Geklebte Umlenkpunkte 6.6 Montage 6.7 Weiterführende Konstruktionen 6.7.1 Spannglasträger mit nachträglichem Verbund 6.7.2 Segmentbauweise 6.8 Zusammenfassung 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick 8 Literatur 8.1 Fachbücher und Fachaufsätze 8.2 Normen und Richtlinien Bezeichnungen Abbildungsverzeichnis und -nachweis Tabellenverzeichnis A Analytische Schnittgrößenberechnung B Kurzzeit-Biegeversuche C Dauerversuche 1000 h D Versuche zur Resttragfähigkeit E Biegeversuche unter Temperaturlast F SOFiSTiK Quelltext

Page generated in 0.4942 seconds