61 |
Waveguide-based single molecule detection in flow / Wellenleiter-basierte Einzelmoleküldetektion in StrömungenThen, Patrick January 2017 (has links) (PDF)
In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides.
Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration.
The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow.
Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory. / Diese Arbeit untersucht fluoreszenzbasierte Einzelmoleküldetektion bei niedrigen Konzentrationen, mit einem Fokus auf den Einsatz von aktivem Transport und Wellenleitern.
Aktiver Transport ermöglicht es, Limitierungen von diffusionsbasierten Systemen im Hinblick auf die niedrigste erreichbare Konzentration zu überwinden.
Der Einfluss von Strömungen auf Einzelmolekülexperimente wird untersucht und ein theoretisches Modell für laminare Strömungen hergeleitet.
Wellenleiter hingegen versprechen kompakte Detektorsysteme und zeigen beträchtliches Potential für eine mögliche Integration in lab-on-a-chip Anwendungen. Ihre Eigenschaften in Einzelmolekülexperimenten werden mithilfe einer auf dem Reziprozitätstheorem aus der elektromagnetischen Theorie basierenden Methode analysiert.
|
62 |
Development of Ab-Initio and Approximate Density Functional Methods and their Application to Complex Fullerene SystemsPorezag, Dirk 04 June 1997 (has links) (PDF)
Die Arbeit befasst sich mit Neu- und Weiterentwicklungen von
Dichtefunktionalmethoden und deren Anwendung zur Untersuchung von
komplexen Systemen aus Fullerenen. Nach einer kurzen Einf¨uhrung in die
theoretischen Grundlagen wird zun¨achst das Problem der Konstruktion
optimierter lokaler Basiss¨atze aus Gaussfunktionen behandelt. Die
Bestimmung der Exponenten und Kontraktionskoeffizienten erfolgt hierbei
auf der Grundlage des Variationsprinzips. Die f¨ur verschiedene Systeme
berechneten Grundzustandsgeometrien, Bindungs- und Ionisationsenergien,
Dipolmomente, Polarisierbarkeiten und Schwingungsfrequenzen best¨atigen
die hohe Zuverl¨assigkeit der generierten Basiss¨atze.
Im n¨achsten Abschnitt wird ein neues Verfahren vorgestellt, das die
Berechnung von Infrarotabsorptions-Intensit¨aten und
Ramanstreuquerschnitten f¨ur Molek¨ul- und Clusterschwingungen mit
Hilfe der Dichtefunktionaltheorie erm¨oglicht. Der Formalismus basiert
auf einer numerischen Bestimmung von Schwingungseigenmoden, dynamischen
Dipolmomenten und dynamischen Polarisierbarkeiten. Untersuchungen zur
Stabilit¨at des Verfahrens sowie Ergebnisse f¨ur experimentell gut
charakterisierte Molek¨ule und Cluster werden pr¨asentiert.
Da Implementierungen des vollst¨andigen Dichtefunktional-Formalismus
erhebliche Computerressourcen beanspruchen, kommt auch der
Weiterentwicklung approximativer Varianten eine grosse Bedeutung zu.
Deshalb besch¨aftigt sich ein Teil der Arbeit mit Modifikationen der
Dichtefunktional-Tight-Binding (DF-TB) Methode, die zu dieser Klasse
von Verfahren geh¨ort. Durch eine ver¨anderte Berechnungsvorschrift
f¨ur die Elemente der Hamiltonmatrix und die Einf¨uhrung einer
Atomladungs-Selbstkonsistenz kann eine verbesserte Beschreibung von
Molek¨ulen, Clustern und Festk¨orpern erreicht werden. Die breite
Anwendbarkeit des DF-TB-Schemas zeigt sich bei der Berechnung von
Strukturen, Bindungsenergien, Dissoziationsbarrieren und
Schwingungseigenschaften f¨ur Fulleren-Oligomere [C60]_N (N=2-4).
Zusammenh¨ange zwischen Struktur und Schwingungsverhalten dieser
Systeme werden aufgezeigt, was eine teilweise Zuordnung der im
Experiment beobachteten Ramansignale erm¨oglicht.
|
63 |
Density-Functional Tight-Binding Calculations on the Structure of Complex Boron Nitride SystemsWidany, Joerg 30 October 1997 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit theoretischen
Untersuchungen struktureller Eigenschaften komplexer
Bornitrid-Systeme.
Die Rechnungen basieren auf einem Dichtefunktional-
Tight-Binding-Verfahren. Die interatomaren Potentiale fuer
das heteronukleare System sowie die Wechselwirkung mit
Wasserstoff werden in Anpassung an ab-initio-Daten
abgeleitet. Mit ausfuehrlichen Testrechnungen
an theoretisch wie experimentell gut charakterisierten
Systemen wird gezeigt, dass die Tight-Binding-Potentiale
die mannigfaltigen Bindungstypen in BN-Systemen richtig
beschreiben.
Im Hauptteil der Arbeit werden in Anwendung der Methode
experimentell relevante Fragestellungen untersucht.
Zunaechst werden die Rekonstruktionen verschiedener
Kristalloberflaechen des kubischen Bornitrid (c-BN)
berechnet. In Anlehnung an experimentelle Ergebnisse
wird die Grenzflaeche zwischen kubischem und hexagonalem
BN hinsichtlich ihres atomaren Aufbaues und ihrer
energetischen Stabilitaet untersucht.
Eine ausfuehrliche Diskussion struktureller Eigenschaften
von amorphen Bornitrid-Modellen folgt im Anschluss. Die
Betrachtung von Modellen unterschiedlicher Massendichte
ermoeglicht es, Rueckschluesse auf grundlegende Mechanismen
der Strukturbildung kristalliner Phasen zu ziehen.
Der Einbau atomaren Wasserstoffs in verschiedene
Bornitrid-Kristallgitter wird im abschliessenden Abschnitt
untersucht.
Weiterhin wendet sich die Arbeit ternaeren Materialien
(Bor-Kohlenstoff-Stickstoff) zu. Es werden Stabilitaet und
strukturelle Eigenschaften von kubischen BC2N-Kristallen
diskutiert. Die gezeigte Anwendbarkeit der Methode auf
derartige Materialien eroeffnet zugleich Perspektiven
fuer kuenftige Arbeiten.
|
64 |
Übung zur Vorlesung Theoretische Physik II: QuantenmechanikLöcse, Frank 18 March 2004 (has links) (PDF)
Übungen zur Vorlesung Theoretische Physik II: Quantenmechanik im Sommersemester 2002 für den Studiengang Physik
|
65 |
Interfaces and Information in Gauge/Gravity Duality / Schnittstellen und Informationen in Eich/Gravitations-DualitätNorthe, Christian January 2019 (has links) (PDF)
This dissertation employs gauge/gravity duality to investigate features
of ( 2 + 1 ) -dimensional quantum gravity in Anti-de Sitter space (AdS)
and its relation to conformal field theory (CFT) in 1 + 1 dimensions.
Concretely, we contribute to research on the frontier of gauge/gravity
with condensed matter as well as the frontier with quantum informa-
tion.
The first research topic of this thesis is motivated by the Kondo
model, which describes the screening of magnetic impurities in metals
by conduction electrons at low temperatures. This process has a de-
scription in the language of string theory via fluctuating surfaces in
spacetime, called branes. At high temperatures the unscreened Kondo
impurity is modelled by a stack of pointlike branes. At low tempera-
tures this stack condenses into a single spherical, two-dimensional brane
which embodies the screened impurity.
This thesis demonstrates how this condensation process is naturally
reinvoked in the holographic D1/D5 system. We find brane configu-
rations mimicking the Kondo impurities at high and low energies and
establish the corresponding brane condensation, where the brane grows
two additional dimensions. We construct supergravity solutions, which
fully take into account the effect of the brane on its surrounding space-
time before and after the condensation takes place. This enables us
to compute the full impurity entropies through which we confirm the
validity of the g-theorem.
The second research topic is rooted in the connection of geometry
with quantum information. The motivation stems from the “complexity
equals volume” proposal, which relates the volume of wormholes to
the cicruit complexity of a thermal quantum state. We approach this
proposal from a pragmatic point of view by studying the properties of
certain volumes in gravity and their description in the CFT.
We study subregion complexities, which are the volumes of the re-
gions subtended by Ryu-Takayanagi (RT) geodesics. On the gravity
side we reveal their topological properties in the vacuum and in ther-
mal states, where they turn out to be temperature independent. On the
field theory side we develop and proof a formula using kinematic space
which computes subregion complexities without referencing the bulk.
We apply our formula to global AdS 3 , the conical defect and a black
hole. While entanglement, i.e. minimal boundary anchored geodesics,
suffices to produce vacuum geometries, for the conical defect we also
need geodesics windings non-trivially around the singularity. The black
hole geometry requires additional thermal contributions. / In dieser Dissertation geht es um die Beziehung zwischen Quantengra-
vitation im (2+1)-dimensionalen Anti-de Sitter-Raum und konformer
Feldtheorie in 1+1 Dimensionen. Insbesondere stellt diese Arbeit neue
Zusammenhänge her zwischen der Eichtheorie/Gravitationsdualität oder
Holographie einerseits und der Festkörperphysik sowie auch der Quan-
teninformationstheorie andererseits.
Das erste Thema dieser Arbeit ist inspiriert durch den Kondo-Effekt.
Dieser beschreibt die Abschirmung magnetischer Störstellen in einem
Metall durch Leitungselektronen bei tiefen Temperaturen. Die String-
Theorie kann diesen Prozess mittels fluktuierender Flächen in der Raum-
zeit, sogenannten Branen, beschreiben. Bei hohen Temperaturen mo-
delliert die String-Theorie die magnetische Störstelle als Stapel punkt-
förmiger Branen. Bei tiefen Temperaturen kondensiert dieser Stapel
zu einer einzelnen zwei-dimensionalen, sphärischen Brane. Diese Kon-
densation ist gleichbedeutend mit der magnetischen Abschirmung der
Störstelle.
Ein Ziel dieser Dissertation ist es zu zeigen, dass diese Kondensation
auf natürliche Weise im holographischen D1/D5-System implementiert
wird. Hierzu beschreiben wir analoge Kondo-Störstellen als Stapel von
Branen, die bei sinkenden Energien zu einer sphärischen Brane konden-
sieren, welche zwei extra Dimensionen besitzt. Hiernach konstruieren
wir die Supergravitationslösungen, welche den vollständigen Einfluss
der Branen-Störstelle auf die umgebende Raumzeit vor und nach der
Kondensation berücksichtigt. Diese Lösungen erlauben es die Entropien
der Störstellen zu bestimmen, womit wir die Gültigkeit des g-Theorems
bestätigen.
Als nächstes widmet sich diese Arbeit der Beziehung zwischen Ge-
ometrie und Quanteninformation. Die Motivation stammt vom “com-
plexity equals volume”-Vorschlag, welcher das Volumen eines Wurm-
loches mit der Schaltkreis-Komplexität eines thermischen Zustandes
verbindet. Um solche Zusammenhänge zu untersuchen, wählen wir einen
pragmatischen Zugang, indem wir uns den Eigenschaften bestimmter
Volumina zuwenden.
Wir untersuchen sogenannte Teilregionskomplexitäten. Diese sind
Volumima von Regionen, die durch Ryu-Takayanagi-Flächen beran-
det werden. Auf der Gravitationsseite enthüllen wir deren topologische
Eigenschaften im Vakuum und in thermischen Zuständen. In Letzteren
zeigen wir, dass Teilregionskomplexitäten temperaturunabhängig sind.
Zuletzt untersuchen wir Teilregionskomplexitäten im Rahmen der Feld-
theorie. Unter Verwendung des kinematischen Raumes entwickeln und
beweisen wir eine Formel zur Berechnung von Teilregionskomplexitäten
in der CFT ohne auf die Gravitationsseite Bezug nehmen zu müssen.
|
66 |
Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung / Electric double layer capacitors for stabilizing intermittent photovoltaic powerAnneser, Katrin January 2020 (has links) (PDF)
Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor.
Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt.
Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden.
Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. / The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered.
As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage.
In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance.
A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions.
Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells.
|
67 |
New techniques and improvements in the MBE growth of Hg-containing narrow gap semiconductors / Neue Techniken und Verbesserung des MBE Wachstums Hg-haltiger Halbleiter mit schmaler BandlückeSchlereth, Raimund January 2020 (has links) (PDF)
The subject of this thesis is the growth of Hg\(_{1-x}\)Cd\(_2\)Te layers via molecular beam epitaxy (MBE).
This material system gives rise to a number of extraordinary physical phenomena related to its electronic band structure and therefore is of fundamental interest in research.
The main results can be divided into three main areas, the implementation of a temperature measurement system based on band edge thermometry (BET), improvements of CdTe virtual substrate growth and the investigation of Hg\(_{1-x}\)Cd\(_2\)Te for different compositions. / Gegenstand dieser Arbeit ist das Wachstum von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten mittels Molekularstrahlepitaxie (MBE).
Die elektronische Bandstruktur dieses Materials führt zu einer Reihe außergewöhnlicher physikalischer Phänomene.
Es ist daher für die Forschung von grundlegendem Interesse.
Die Ergebnisse lassen sich in drei Hauptbereiche unterteilen: die Implementierung eines Temperaturmessgeräts basierend auf dem Prinzip der Bandkantenthermometrie (BET), die Verbesserung des Wachstums von virtuellen CdTe-Substraten und die Untersuchung von Hg\(_{1-x}\)Cd\(_2\)Te-Schichten für verschiedene Materialkonzentrationen.
|
68 |
Analyse und Entwicklung kinetischer Modelle für das Clusterwachstum auf OberflächenKörner, Martin 27 August 2012 (has links)
Clusterwachstum auf Oberflächen spielt eine wichtige Rolle bei der Entwicklung neuartiger Materialien in der Nanotechnologie. Für ein Verständnis der vielfältigen möglichen Clusterstrukturen muss insbesondere die Wachstumskinetik fern des thermodynamischen Gleichgewichts berücksichtigt werden. Im ersten Teil dieser Arbeit werden auf Grundlage umfangreicher kinetischer Monte-Carlo-Simulationen Größenverteilungen von Clustern für verschiedene Wachstumsmodelle untersucht. Es wird gezeigt, dass Ratengleichungen die Größenverteilungen korrekt vorhersagen können, wenn Parameter für den Einfang von Teilchen in ihrer vollen funktionalen Abhängigkeit von der Clustergröße, Bedeckung und dem D/F-Verhältnis aus Diffusionskoeffizient D und Aufdampfrate F erfasst werden. Des Weiteren werden selbstkonsistente Theorien für die Einfangparameter und Theorien für das Verhalten skalierter Größenverteilungen im Grenzfall großer D/F-Verhältnisse kritisch überprüft. Im zweiten Teil der Arbeit wird ein Modell für das Wachstum von Fullerenen auf dielektrischen Kristalloberflächen entwickelt. Mit Hilfe eines neuen Mechanismus der unterstützten Entnetzung wird die Entstehung merkwürdiger Clustermorphologien in diesen Systemen erklärt, welche zuvor in verschiedenen Experimenten gefunden wurden. Kinetische Monte-Carlo-Simulationen des Modells mit Parametern, die für das Wachstum von Fullerenen auf der Kalziumfluorid(111)-Oberfläche angepasst wurden, liefern eine hervorragende Übereinstimmung mit experimentellen Beobachtungen.
|
69 |
Beschleunigte Magnetresonanz-Relaxographie / Accelerated Magnetic Resonance RelaxographyPfister, Julian January 2019 (has links) (PDF)
Ziel dieser Arbeit ist es, die quantitative MRT in den Fokus zu rücken. In den letzten Jahren hat sich auf diesem Forschungsgebiet viel weiterentwickelt und es wurden verschiedenste Sequenzen und Methoden vorgestellt, um insbesondere Relaxationszeitparameter quantitativ in kurzer Zeit zu messen. Steady-State-Sequenzen eignen sich besonders für diese Thematik, da sie kurze Messzeiten benötigen und darüber hinaus ein relativ hohes SNR besitzen. Speziell die IR TrueFISP-Sequenz bietet für die Parameterquantifizierung viel Potential. Ursprünglich wurde diese Sequenz an der Universität Würzburg zur simultanen Messung von T1- und T2-Relaxationszeiten vorgestellt und hinsichtlich der Zeiteffizienz weiterentwickelt. In dieser Arbeit wurde ein neuartiger iterativer Rekonstruktionsansatz für die IR TrueFISP-Sequenz entwickelt, der auf einer Hauptkomponentenanalyse (PCA) basiert und sich die glatten Signalverläufe zu Nutze macht. Aufgrund der hohen Zeitauflösung dieser Rekonstruktionstechnik werden dabei auch Gewebekomponenten mit kurzen Relaxationszeiten detektierbar. Weiterhin bewahrt der Rekonstruktionsansatz Informationen mehrerer Gewebekomponenten innerhalb eines Voxels und ermöglicht damit eine relaxographische Untersuchung. Insbesondere beim Menschen führen der Partialvolumeneffekt und die Mikrostruktur des Gewebes zu Signalverläufen, die ein multi-exponentielles Signal liefern. Die MR-Relaxographie, also die Darstellung von Relaxationszeitverteilungen innerhalb eines Voxels, stellt eine Möglichkeit dar, um die beteiligten Gewebekomponenten aus dem überlagerten Signalverlauf zu extrahieren. Insgesamt bilden die optimierte Relaxometrie mit der Möglichkeit der analytischen Korrektur von Magnetfeldinhomogenitäten und die beschleunigte Relaxographie die Hauptteile dieser Dissertation. Die Hauptkapitel werden im Folgenden noch einmal gesondert zusammengefasst.
Die simultane Aufnahme der quantitativen T1- und T2-Parameter-Karten kann mit einem
Goldenen-Winkel-basiertem radialen IR TrueFISP-Readout in ungefähr 7 Sekunden pro
Schicht erreicht werden. Die bisherige Rekonstruktionstechnik mit dem KWIC-Filter ist
durch dessen breite Filter-Bandbreite und somit in der zeitlichen Auflösung limitiert. Besonders bei hohen räumlichen Frequenzen wird eine sehr große Anzahl an Projektionen
zusammengefasst um ein Bild zu generieren. Dies sorgt dafür, dass Gewebekomponenten mit kurzer T1*-Relaxationszeit (z.B. Fett oder Myelin) nicht akkurat aufgelöst werden können. Um dieses Problem zu umgehen, wurde die T1* shuffling-Rekonstruktion entwickelt, die auf dem T2 Shuffling-Ansatz basiert. Diese Rekonstruktionstechnik macht sich die glatten Signalverläufe der IR TrueFISP-Sequenz zu Nutze und ermöglicht die Anwendung einer PCA. Die iterative Rekonstruktion sorgt dafür, dass mit nur acht kombinierten Projektionen pro generiertem Bild eine merklich verbesserte temporäre Auflösung erzielt werden kann. Ein Nachteil ist jedoch das stärkere Rauschen in den ersten Bildern der Zeitserie bedingt durch die angewandte PCA. Dieses verstärkte Rauschen äußert sich in den leicht erhöhten Standardabweichungen in den berechneten Parameter-Karten. Jedoch ist der Mittelwert näher an den Referenzwerten im Vergleich zu den Ergebnissen mit dem KWIC-Filter. Letztendlich kann man sagen, dass die Ergebnisse leicht verrauschter, aber exakter sind.
Mittels zusätzlichen Regularisierungstechniken oder Vorwissen bezüglich des Rauschlevels
wäre es zudem noch möglich, das SNR der ersten Bilder zu verbessern, um dadurch den
beschriebenen Effekt zu verringern.
Grundsätzlich hängt die Genauigkeit von IR TrueFISP vom T1/T2-Verhältnis des betreffenden
Gewebes und dem gewählten Flipwinkel ab. In dieser Arbeit wurde der Flipwinkel besonders für weiße und graue Masse im menschlichen Gehirn optimiert. Mit den verwendeten 35° wurde er außerdem etwas kleiner gewählt, um zudem Magnetisierungstransfereffekte zu minimieren. Mit diesen Einstellungen ist die Präzision vor allem für hohe T1- und niedrige T2-Werte sehr gut, wird jedoch insbesondere für höhere T2-Werte schlechter. Dies ist aber ein generelles Problem der IR TrueFISP-Sequenz und hängt nicht mit der entwickelten Rekonstruktionsmethode zusammen. Außerdem wurde im fünften Kapitel eine
Akquisitionstechnik vorgestellt, die eine 3D-Abdeckung der quantitativen Messungen des Gehirns in klinisch akzeptabler Zeit von unter 10 Minuten erzielt. Dies wird durch Einsatz der parallelen Bildgebung erreicht, da eine Kombination aus radialer Abtastung in der Schicht und kartesischer Aufnahme in Schichtrichtung (Stack-of-Stars) vorliegt.
Ein großes Problem in der Steady-State-Sequenz (und somit auch bei IR TrueFISP) sind
Magnetfeldinhomogenitäten, die durch Suszeptibilitätsunterschiede verschiedener Gewebe und/oder Inhomogenitäten des Hauptmagnetfeldes hervorgerufen werden. Diese führen zu Signalauslöschungen und damit verbunden zu den beschriebenen Banding-Artefakten. Mithilfe der analytisch ermittelten Korrekturformeln ist es nun möglich, die berechneten (T1,T2)-Wertepaare unter Berücksichtigung der tatsächlich auftretenden Off- Resonanzfrequenz für einen großen Bereich zu korrigieren. An den kritischen Stellen, an denen die Bandings auftreten, liefert jedoch auch diese Korrektur keine brauchbaren Ergebnisse. Grundsätzlich ist es für die Genauigkeit der Ergebnisse stets zu empfehlen, die Flipwinkel- und B0-Karte zusätzlich mit aufzunehmen, um diese Parameter für die quantitative Auswertung exakt zu kennen. Mit den beschriebenen Methoden aus Kapitel 6 könnte es prinzipiell auch möglich sein, die Off-Resonanzfrequenz aus dem Signalverlauf zu ermitteln und auf die zusätzliche Messung der B0-Karte zu verzichten. B0-Änderungen während der Messung, die von der Erwärmung der passiven Shim-Elemente im MR-System hervorgerufen werden, sind kaum zu korrigieren. Ein stabiler Scanner ohne B0-Drift ist deshalb für quantitative Auswertungen erforderlich.
Die erwähnte Messzeit von 7 Sekunden pro Schicht garantiert, dass auch Gewebe mit längeren Relaxationskomponenten annähernd im Steady-State sind, was wiederum für das Umkehren des Signals in den abklingenden Verlauf gegen Null und die anschließende
Multikomponentenanalyse (vgl. Kapitel 7) notwendig ist. Mit der inversen Laplace-
Transformation ist es innerhalb eines Voxels möglich, Signalverläufe auf mehrere Komponenten hin zu untersuchen. Der ursprünglich angenommene mono-exponentielle Verlauf wird durch ein multi-exponentielles Verhalten abgelöst, was vor allem in biologischem Gewebe eher der Wahrheit entspricht. Gewebe mit kurzen Relaxationskomponenten (T1* < 200 ms) sind klinisch relevant und mit T1* shuffling detektierbar. Vor allem Myelin innerhalb des Gehirns ist bei neurologischen Fragestellungen ein Indikator zur Diagnose im Frühstadium (z.B. für neurodegenerative Erkrankungen) und
deshalb von besonderem Interesse. Die Integration über verschiedene T1*-Zeitbereiche im
T1*-Spektrum ermöglicht dazu die Erstellung von Gewebekomponenten-Karten, mithilfe
derer klinische Auswertungen sinnvoll wären. Die Erstellung dieser Karten ist prinzipiell
möglich und funktioniert für mittlere und lange Gewebekomponenten recht gut. Die
klinisch relevanten kurzen Gewebekomponenten sind dagegen bei der radialen Aufnahme
mit nur einem Schuss noch nicht befriedigend. Deshalb wurde die Aufnahmetechnik in
eine quasi-zufällige kartesische Akquisition mit mehreren Schüssen weiterentwickelt. Die Ergebnisse wurden in Kapitel 7 vorgestellt und sind vielversprechend. Einzig die Messzeit sollte mit zusätzlichen Beschleunigungen noch weiter verkürzt und auf eine kartesische 3D-Akquisition erweitert werden.
Die Beschränkung auf T1*-Spektren bei der Multikomponentenanalyse und die Tatsache, dass deren Amplitude von einer Kombination von S0 und Sstst abhängen, führen dazu, dass es nicht ohne Weiteres möglich ist für einen einzelnen Gewebetyp an die T1- und T2-Information zu gelangen. In Kapitel 8 wurde gezeigt, dass dies mit einer zusätzlichen
Messung gelingen kann. Das finale Ergebnis dieser Messungen ohne und mit Inversion sind zweidimensionale Spektren, bei der für jede Gewebekomponente innerhalb eines Voxels der T1- und T2-Wert abgelesen werden kann. Wichtig hierbei ist die Tatsache, dass der verwendete Ansatz kein Vorwissen über die Anzahl der zu erwartenden Gewebekomponenten (Peaks) im Voxel voraussetzt. Auch bei dieser Methodik ist die Kenntnis über den tatsächlichen Flipwinkel von Bedeutung, da dieser in den Formeln zur Berechnung von T1 und T2 verwendet wird. Die Stabilität des B0-Feldes ist hier ebenso von enormer Bedeutung, da Änderungen zwischen den beiden Messungen zu einem unterschiedlichen Steady-State und somit zu Abweichungen bei den nachfolgenden Berechnungen führen, die auf den selben Steady-State-Wert ausgelegt sind.
Zusammenfassend lässt sich sagen, dass mit dieser Arbeit die Grundlagen für genauere
und robustere quantitative Messungen mittels Steady-State-Sequenzen gelegt wurden. Es
wurde gezeigt, dass sich Relaxationszeitspektren für jedes einzelne Voxel generieren lassen.
Dadurch ist eine verbesserte Auswertung möglich, um genauere Aussagen über die Zusammensetzung einer Probe (vor allem beim menschlichen Gewebe) treffen zu können. Zudem wurde die Theorie für ultraschnelle 2D-Relaxographie-Messungen vorgestellt. Erste”Proof of Principle“-Experimente zeigen, dass es möglich ist, 2D-Relaxationszeitspektren in sehr kurzer Zeit zu messen und graphisch darzustellen. Diese Aufnahme- und Datenverarbeitungstechnik ist in dieser Form einmalig und in der Literatur kann bis dato keine schnellere Methode gefunden werden. / The goal of this thesis is to put the quantitative MRI in focus. In recent years, much progress has been made in this area of research and a variety of sequences and methods have been presented, in particular to quantitatively measure relaxation time parameters in a short time. Steady-state sequences are particularly suitable for this topic, since they require short measurement times and, moreover, have a relatively high SNR. Especially the IR TrueFISP sequence offers a lot of potential for parameter quantification. Originally, this sequence was presented at the University of Würzburg for the simultaneous measurement of T1 and T2 relaxation times and further developed in terms of time efficiency. In this work, a novel iterative reconstruction approach has been developed for the IR TrueFISP sequence, which is based on a Principal Component Analysis (PCA) and utilizes the smooth signal courses. Due to the high time resolution of this reconstruction technique also tissue components with short relaxation times are detectable. Furthermore, the reconstruction approach preserves information of several tissue components within a voxel and thus allows for a relaxographic examination. In humans in particular, the partial volume effect and the microstructure of the tissue lead to signal courses that provide a multi-exponential signal. MR relaxography, i.e. the representation of relaxation time distributions within a voxel, offers a possibility to extract the tissue components involved from the superimposed signal course. Overall, the optimized relaxometry with the possibility of analytical correction of magnetic field inhomogeneities and the accelerated relaxography constitute the main parts of this dissertation. The main chapters will be summarized separately below.
The simultaneous acquisition of quantitative T1 and T2 parameter maps can be achieved
with a golden angle based radial IR TrueFISP readout in approximately 7 seconds per slice. The previous reconstruction technique with the KWIC filter is limited by its broad filter bandwidth and thus in the temporal resolution. Especially at high spatial frequencies, a very large number of projections are combined to generate an image. This ensures that tissue components with a short T1* relaxation time (e.g., fat or myelin) can not be accurately resolved. To circumvent this problem, the T1* shuffling reconstruction was developed based on the T2 Shuffling approach. This reconstruction technique takes advantage of the smooth signal courses of the IR TrueFISP sequence and allows the application of a PCA. The iterative reconstruction ensures that with only eight combined projections per generated image a significantly improved temporary resolution can be achieved. A drawback, however, is the increased noise in the first pictures of the time series due to the applied PCA. This increased noise manifests itself in the slightly increased standard deviations in the calculated parameter maps. However, the mean value is closer to the reference values compared to the results with the KWIC filter. Finally, it can be said that the results are slightly noisier, but more accurate. By means of additional regularization techniques or prior knowledge of the noise level, it would also be possible to improve the SNR of the first images, thereby reducing the described effect.
Basically, the accuracy of IR TrueFISP depends on the T1/T2 ratio of the tissue and the selected flip angle. In this work, the flip angle has been optimized for white and gray matter in the human brain. With the 35° used, it was also chosen slightly smaller, in order to minimize magnetization transfer effects. With these settings, the precision is very good, especially for high T1 and low T2 values, but gets worse, especially for higher T2 values.
However, this is a general problem of the sequence and is not related to the developed
reconstruction method. In addition, the fifth chapter presented an acquisition technique that provides 3D coverage of quantitative brain measurements in a clinically acceptable
time of less than 10 minutes. This is achieved through the use of parallel imaging, since
there is a combination of radial scanning within one partition and a Cartesian acquisition
in the slice direction (stack-of-stars).
A major problem in the steady-state sequence (and therefore also in IR TrueFISP) are
magnetic field inhomogeneities that are caused by susceptibility differences of various tissues and/or inhomogeneities of the main magnetic field. These lead to signal cancellations
and associated with the described banding artifacts. Using the analytically determined
correction formulas, it is now possible to correct the calculated (T1,T2) value pairs for a large range taking the actually occurring off-resonance frequency into account. However, even at the critical points where the bandings occur, this correction does not provide useable results. In principle, it is always recommended for the accuracy of the results to additionally acquire the flip angle and B0 map in order to know exactly these parameters for the quantitative evaluation. With the methods described in chapter 6, it could in principle also be possible to determine the off-resonance frequency out of the signal course and to dispense with the additional measurement of the B0 map. B0 changes during the measurement, which are caused by the heating of the passive shim elements in the MR system, are difficult to correct. A stable scanner without B0 drift is therefore required for quantitative evaluations.
The mentioned measurement time of 7 seconds per slice guarantees that even tissues with longer relaxation components are approximately in the steady-state, which in turn is necessary for the reversal of the signal towards the exponential decay to zero and the subsequent multi-component analysis (see chapter 7). With the inverse Laplace transformation, it is possible to examine signal courses over several components within a single voxel. The originally assumed mono-exponential signal course is replaced by a multi-exponential behavior, which is more true, especially in biological tissue. Tissues with short relaxation components (T1*< 200 ms) are clinically relevant and detectable by T1* shuffling. In particular, myelin within the brain is an indicator of early diagnosis in neurological problems (e.g., for neurodegenerative diseases) and therefore of particular interest. The integration across different T1* time ranges in the T1* spectrum allows the generation of tissue component maps that would make clinical evaluations useful. The generation of these maps is possible in principle and works quite well for medium and long tissue components. The clinically relevant short tissue components, however, are not yet satisfactory in the radial measurements with a single shot. Therefore, the acquisition technique has evolved into a quasi-random Cartesian multi-shot acquisition. The results were presented in Chapter 7 and are promising. Only the measurement time should be further reduced with additional
accelerations and extended to a Cartesian 3D acquisition.
The limitation to T1* spectra in multicomponent analysis, and the fact that their amplitude
depends on a combination of S0 and Sstst, makes it not readily possible to access the T1 and T2 information for a single tissue type. In chapter 8 it was shown that this can be achieved with an additional measurement. The final result of these measurements, with and without inversion, are two-dimensional spectra in which the T1 and T2 values can be obtained for each tissue component within a voxel. Important here is the fact that the used approach requires no prior knowledge of the number of expected tissue components (peaks) in the voxel. Also in this method, the knowledge about the actual flip angle is important because it is used in the formulas for calculating T1 and T2.
The stability of the B0 field is also of enormous importance here, since changes between the two measurements lead to a different steady-state and thus to deviations in the subsequent
calculations, which are designed for the same steady-state value.
In summary, this work has laid the foundations for more accurate and robust quantitative
measurements by means of steady-state sequences. It has been shown that relaxation time
spectra can be generated for each individual voxel. As a result, an improved evaluation is possible in order to be able to make more precise statements about the composition of a sample (especially in the case of human tissue). In addition, the theory for ultrafast 2D relaxography measurements was presented. First proof of principle experiments show that it is possible to measure and graph 2D relaxation time spectra in a very short time. This acquisition and data processing technique is unique in this form, and up to now in literature no faster method can be found.
|
70 |
3D Single Molecule Imaging In Whole Cells Enabled By Lattice Light-Sheet Illumination / 3D Einzelmolekülbildgebung in ganzen Zellen ermöglicht durch GitterlichtblattbeleuchtungWäldchen, Felix January 2020 (has links) (PDF)
Single molecule localization microscopy has seen a remarkable growth since its first
experimental implementations about a decade ago. Despite its technical challenges,
it is already widely used in medicine and biology and is valued as a unique tool
to gain molecular information with high specificity. However, common illumination techniques do not allow the use of single molecule sensitive super-resolution
microscopy techniques such as direct stochastic optical reconstruction microscopy
(dSTORM) for whole cell imaging. In addition, they can potentially alter the
quantitative information.
In this thesis, I combine dSTORM imaging in three dimensions with lattice lightsheet illumination to gain quantitative molecular information from cells unperturbed by the illumination and cover slip effects. Lattice light-sheet illumination
uses optical lattices for beam shaping to restrict the illumination to the detectable
volume. I describe the theoretical background needed for both techniques and detail
the experimental realization of the system as well as the software that I developed
to efficiently evaluate the data.
Eventually, I will present key datasets that demonstrate the capabilities of the
developed microscope system with and without dSTORM. My main goal here was
to use these techniques for imaging the neural cell adhesion molecule (NCAM, also
known as CD56) in whole cells. NCAM is a plasma membrane receptor known to
play a key role in biological processes such as memory and learning. Combining
dSTORM and lattice light-sheet illumination enables the collection of quantitative
data of the distribution of molecules across the whole plasma membrane, and shows
an accumulation of NCAM at cell-cell interfaces. The low phototoxicity of lattice
light-sheet illumination further allows for tracking individual NCAM dimers in living cells, showing a significant dependence of its mobility on the actin skeleton of
the cell. / Die Einzelmoleküllokalisationsmikroskopie hat seit der ersten experimentellen Umsetzung vor etwa 10 Jahren einen bemerkenswerten Aufschwung erfahren. Trotz des hohen technischen Anspruchs findet sie bereits weite Verbreitung in der Biologie und Medizin und wird als einzigartiges Werkzeug geschätzt, um molekulare Information mit hoher Spezifität zu erlangen. Dennoch erschweren die gebräuchlichen Beleuchtungsmethoden die Anwendung von Methoden der Einzelmoleküllokalisationsmikroskopie wie dSTORM (engl. direct stochastic optical reconstruction microscopy) auf das Volumen ganzer Zellen, denn hier kann die Beleuchtung selbst die quantitativen Daten beeinflussen. In dieser Arbeit kombiniere ich dreidimensionale dSTORM-Bildgebung mit Gitterlichtblattbeleuchtung (engl. lattice light-sheet illumination) um quantitative, molekulare Information ohne durch die Beleuchtung verursachte Störungen zu gewinnen. Die Gitterlichtblattbeleuchtung nutzt optische Gitter zur Strahlformung, um das beleuchtete Volumen auf das detektierbare Volumen zu beschränken. Ich stelle den nötigen, theoretischen Hintergrund für beide Methoden dar und beschreibe die experimentelle Umsetzung sowie die von mir zur effizienten Datenauswertung entwickelte Software. Schließlich präsentiere ich verschiedene Datensätze, die die Fähigkeiten des Systems mit und ohne dSTORM demonstrieren. Mein Hauptziel war hierbei, beide Methoden zu nutzen, um das neuronale Zelladhäsionsmolekül (NCAM, engl. neural cell adhesion molecule) in ganzen Zellen abzubilden. NCAM (auch bekannt als CD56) ist ein Rezeptor auf der Plasmembran, der für seine Schlüsselrolle im Zusammenhang mit biologischen Prozessen wie Lernen und Gedächtnis bekannt ist. Die Kombination von dSTORM und Gitterlichtblattbeleuchtung ermöglicht das sammeln quantitativer Daten der Verteilung über die komplette Plasmamembran, wobei sich eine Akkumulation an Zell-Zell Kontaktflächen zeigt. Die niedrige Photoschädigung der Gitterlichtblattbeleuchtung ermöglicht weiterhin das Verfolgen von einzelnen NCAM-Dimeren in lebenden Zellen. Dort zeigt sich eine signifikante Abhängigkeit ihrer Mobilität vom Aktinskelett der Zelle.
|
Page generated in 0.0347 seconds