• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 238
  • 50
  • 45
  • Tagged with
  • 331
  • 331
  • 138
  • 138
  • 138
  • 70
  • 34
  • 34
  • 34
  • 33
  • 31
  • 31
  • 30
  • 29
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimal Design of Focusing Nanoantennas for Light : Novel Approaches: From Evolution to Mode-Matching / Optimierung von Nano-Antennen zur Fokussierung von Licht: Neue Ansätze: Von Evolution zu Moden-Anpassung

Feichtner, Thorsten January 2017 (has links) (PDF)
Optische Antennen arbeiten ähnlich wie Antennen für Radiowellen und wandeln elektromagnetische Strahlung in elektrische Wechselströme um. Ladungsdichteansammlungen an der Antennen-Oberfläche führen zu starken und lokalisierten Nahfeldern. Da die meisten optischen Antennen eine Ausdehnung von wenigen hundert Nanometern besitzen, ermöglichen es ihre Nahfelder, Licht auf ein Volumen weit unterhalb des Beugungslimits zu fokussieren, mit Intensitäten, die mehrere Größenordnungen über dem liegen, was man mit klassischer beugender und reflektierender Optik erreichen kann. Die Aufgabe, die Abstrahlung eines Quantenemitters zu maximieren, eines punktförmigen Objektes, welches einzelne Photonen absorbieren und emittieren kann, ist identisch mit der Aufgabe, die Feldintensität am Ort des Quantenemitters zu maximieren. Darum ist es erstrebenswert, den Fokus optischer Antennen zu optimieren Optimierte Radiofrequenz-Antennen, welche auf Größenordnungen von wenigen 100 Nanometern herunterskaliert werden, zeigen bereits eine gute Funktionalität. Jedoch liegen optische Frequenzen in der Nähe der Plasmafrequenz von den Metallen, die für optische Antennen genutzt werden und die Masse der Elektronen kann nicht mehr vernachlässigt werden. Dadurch treten neue physikalische Phänomene auf. Es entstehen gekoppelte Zustände aus Licht und Ladungsdichte-Schwingungen, die sogenannten Plasmonen. Daraus folgen Effekte wie Volumenströme und kürzere effektive Wellenlängen. Zusätzlich führt die endliche Leitfähigkeit zu thermischen Verluste. Das macht eine Antwort auf die Frage nach der optimalen Geometrie für fokussierende optische Antennen schwer. Jedoch stand vor dieser Arbeit der Beweis noch aus, dass es für optische Antennen bessere Alternativen gibt als herunterskalierte Radiofrequenz-Konzepte. In dieser Arbeit werden optische Antennen auf eine bestmögliche Fokussierung optimiert. Dafür wird ein Ansatz gewählt, welcher bei Radiofrequenz-Antennen für komplexe Anwendungsfelder (z.B. isotroper Breitbandempfang) schon oft Erfolg hatte: evolutionäre Algorithmen. Die hier eingeführte erste Implementierung erlaubt eine große Freiheit in Bezug auf Partikelform und Anzahl, da sie quadratische Voxel auf einem planaren, quadratischen Gitter beliebig anordnet. Die Geometrien werden in einer binären Matrix codiert, welche als Genom dient und somit Methoden wie Mutation und Paarung als Verbesserungsmechanismus erlaubt. So optimierte Antennen-Geometrien übertreffen vergleichbare klassische Dipol-Geometrien um einen Faktor von Zwei. Darüber hinaus lässt sich aus den optimierten Antennen ein neues Funktionsprinzip ableiten: ein magnetische Split-Ring-Resonanz kann mit Dipol-Antennen leitend zu neuartigen und effektiveren Split-Ring-Antennen verbunden werden, da sich ihre Ströme nahe des Fokus konstruktiv überlagern. Im nächsten Schritt wird der evolutionäre Algorithmus so angepasst, so die Genome real herstellbare Geometrien beschreiben. Zusätzlich wird er um eine Art ''Druckertreiber'' erweitert, welcher aus den Genomen direkt Anweisungen zur fokussierten Ionenstrahl-Bearbeitung von einkristallinen Goldflocken erstellt. Mit Hilfe von konfokaler Mikroskopie der Zwei-Photonen-Photolumineszenz wird gezeigt, dass Antennen unterschiedlicher Effizienz reproduzierbar aus dem evolutionären Algorithmus heraus hergestellt werden können. Außerdem wird das Prinzip der Split-Ring-Antenne verbessert, indem zwei Ring-Resonanzen zu einer Dipol-Resonanz hinzugefügt werden. Zu guter Letzt dient die beste Antenne des zweiten evolutionäre Algorithmus als Inspiration für einen neuen Formalismus zur Beschreibung des Leistungsübertrages zwischen einer optischen Antenne und einem Punkt-Dipol, welcher sich als "dreidimensionaler Modenüberlapp" beschreiben lässt. Damit können erstmals intuitive Regeln für die Form einer optischen Antenne aufgestellt werden. Die Gültigkeit der Theorie wird analytisch für den Fall eines Dipols nahe einer metallischen Nano-Kugel gezeigt. Das vollständige Problem, Licht mittels einer optischen Antenne zu fokussieren, lässt sich so auf die Erfüllung zweier Modenüberlapp-Bedingungen reduzieren -- mit dem Feld eines Punktdipols, sowie mit einer ebenen Welle. Damit lassen sich zwei Arten idealer Antennenmoden identifizieren, welche sich von der bekannten Dipol-Antennen-Mode grundlegend unterscheiden. Zum einen lässt sich dadurch die Funktionalität der evolutionären und Split-Ring-Antennen erklären, zum lassen sich neuartige plasmonische Hohlraum-Antennen entwerfen, welche zu besserer Fokussierung von Licht führen. Dies wird numerisch im direkten Vergleich mit einer klassischen Dipolantennen-Geometrie gezeigt. / Optical antennas work similar to antennas for the radio-frequency regime and convert electromagnetic radiation into oscillating electrical currents. Charge density accumulations form at the antenna surface leading to strong and localized near-fields. Since most optical antennas have dimensions of a few hundred nanometers, their near-fields allow the focusing of electromagnetic fields to volumes much smaller than the diffraction limit, with intensities several orders of magnitude larger than achievable with classical diffractive and refractive optical elements. The task to maximize the emission of a quantum emitter, a point-like entity capable of reception and emission of single photons, is identical to the task to maximize the field intensity at the position of the quantum emitter. Therefore it is desirable to optimize the capabilities of focusing optical antennas. Radio-frequency-antenna designs scaled to optical dimensions of several hundred nanometers show already a decent performance. However, optical frequencies lie near the plasma frequency of the metals used for optical antennas and the mass of electrons cannot be neglected anymore. This leads to new physical phenomena. Light can couple to charge density oscillations, yielding a so-called Plasmon. Effects emerge which have no equivalent in the very advanced field of radio-frequency-technology, e.g.~volume currents and shortened effective wavelengths. Additionally the conductivity is not infinite anymore, leading to thermal losses. Therefore, the question for the optimal geometry of a focusing optical antenna is not easy to answer. However, up to now there was no evidence that there exist better alternatives for optical antennas than down-scaled radio-frequency designs. In this work the optimization of focusing optical antennas is based on an approach, which often proved successful for radio-frequency-antennas in complex applications (e.g.~broadband and isotropic reception): evolutionary algorithms. The first implementation introduced here allows a large freedom regarding particle shape and count, as it arranges cubic voxels on a planar, square grid. The geometries are encoded in a binary matrix, which works as a genome and enables the methods of mutation and crossing as mechanism of improvement. Antenna geometries optimized in this way surpass a comparable dipolar geometry by a factor of 2. Moreover, a new working principle can be deduced from the optimized antennas: a magnetic split-ring resonance can be coupled conductively to dipolar antennas, to form novel and more effective split-ring-antennas, as their currents add up constructively near the focal point. In a next step, the evolutionary algorithm is adapted so that the binary matrices describe geometries with realistic fabrication constraints. In addition a 'printer driver' is developed which converts the binary matrices into commands for focused ion-beam milling in mono-crystalline gold flakes. It is shown by means of confocal two-photon photo-luminescence microscopy that antennas with differing efficiency can be fabricated reliably directly from the evolutionary algorithm. Besides, the concept of the split-ring antenna is further improved by adding this time two split-rings to the dipole-like resonance. The best geometry from the second evolutionary algorithm inspires a fundamentally new formalism to determine the power transfer between an antenna and a point dipole, best termed 'three-dimensional mode-matching'. Therewith, for the first time intuitive design rules for the geometry of an focusing optical antenna can be deduced. The validity of the theory is proven analytically at the case of a point dipole in from of a metallic nano sphere. The full problem of focusing light by means of an optical antenna can, thus, be reduced to two simultaneous mode-matching conditions -- on the one hand with the fields of a point dipole, on the other hand with a plane wave. Therefore, two types of ideal focusing optical antenna mode patterns are identified, being fundamentally different from the established dipolar antenna mode. This allows not only to explain the functionality of the evolutionary antennas and the split-ring antenna, but also helps to design novel plamonic cavity antennas, which lead to an enhanced focusing of light. This is proven numerically in direct comparison to a classical dipole antenna design.
12

Arbeitstreffen: Kern- und Teilchenphysik, 4.-7. Oktober 1994, Pirna

Möller, K., Naumann, L. 26 August 2010 (has links) (PDF)
nicht vorhanden
13

Biennial Scientific Report 2007-2008 : Volume 2: Cancer Research

08 September 2010 (has links) (PDF)
nicht vorhanden
14

Bi-Annual Report 2007/08 - Rossendorf Beamline at ESRF (ROBL-CRG)

Scheinost, A. 09 September 2010 (has links) (PDF)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 6th report covers the period from January 2007 to December 2008. In these two years, 50 peerreviewed papers have been published based on experiments done at the beamline. The average citation index, which increased constantly over the years, has now reached 3.5 (RCH) and 3.0 (MRH), indicating that papers are predominately published in journals with high impact factors. Six exemplary highlight reports on the following pages should demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). Demand for beamtime remains very high as in the previous years, with an average oversubscription rate of 1.8 for ESRF experiments. The attractiveness of our beamline is based upon the high specialization of its two end-stations. RCH is one of only two stations in Europe dedicated to x-ray absorption spectroscopy of actinides and other radionuclides. The INE beamline at ANKA provides superior experimental flexibility and extends to lower energies, including important elements like P and S. In contrast, ROBL-RCH provides a much higher photon flux, hence lower detection limits crucial for environmental samples, and a higher energy range extending to elements like Sb and I. Therefore, both beamlines are highly complementary, covering different aspects of radiochemistry research. Once the MARS beamline at SOLEIL is ready to run radionuclides (>2010), it will cover a third niche (Materials Science of actinides, including irradiated fuel) not accessible for the two other beamlines. The Materials Research Hutch MRH has realized an increasing number of in-situ investigations in the last years. On the one hand thin film systems were characterized during magnetron sputtering. On the other hand diffraction experiments under controlled atmosphere were performed. A high variety of experimental parameters was covered by varying pressure, temperature and atmospheric compositions including highly reactive gases. Furthermore structural investigations were combined with electrical conductivity measurements. These kind of in-situ experiments are the key to monitor and understand reaction mechanism or the influence of process parameters, which are again the basis to tailor materials properties on demand. The core competences of MRH are these experimental possibilities, which make it unique among other diffraction beamlines. In fall 2007, ROBL was reviewed by an international panel on behalf of the ESRF. The very positive panel report recommended a renewal of the contract between ESRF and FZD for the next five years, and a major upgrade of critical optical components of the beamline to keep ROBL competitive for the next decade. The FZD will provide 2 Mio € from 2009 to 2011 for this upgrade, which will be performed in parallel to the major upgrade of the ESRF to minimize the downtime. According to the current plans of the ESRF, our users have to expect that ROBL will have only limited or no operation for several months from August 2011 on. Since July 2004 the beamline is a member of the pooled facilities of ACTINET – European Network of Excellence. In the reported period, RCH has provided 27 % of its inhouse beamtime to perform 11 ACTINET experiments. The success of ACTINET within FP-6 has now led to a renewal of ACTINET within FP-7, running until end of 2011.
15

Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO\(_3\) / Dimensionalitätsgetriebener Metal-Isolator-Übergang in Spin-Bahn-gekoppeltem SrIrO\(_3\)

Schütz, Philipp January 2020 (has links) (PDF)
In the past decades correlated-electron physics due to strong Coulomb interactions and topological physics caused by band inversion often induced by strong spin-orbit coupling have been the workhorses of solid state research. While commonly considered as disparate phenomena, it was realized in the early 2010s that the interplay between the comparably strong Coulomb and spin-orbit interactions in the $5d$ transition metal oxides may result in hitherto unforeseen properties. The layered perovskite Sr$\textsubscript{2}$IrO$\textsubscript{4}$ has attracted special attention due to the observation of an unconventional Mott-insulating phase and predictions of exotic superconductivity. Less is known about its three-dimensional counterpart SrIrO$\textsubscript{3}$, since rather than the cubic perovskite structure it adopts the thermodynamically stable hexagonal polymorph thereof. This thesis therefore sets out to establish the synthesis of epitaxially stabilized perovskite SrIrO$\textsubscript{3}$ by pulsed laser deposition and to investigate its electronic and magnetic structure by state-of-the-art x-ray spectroscopy techniques. In this endeavor the appropriate thermodynamic conditions for the growth of high-quality SrIrO$\textsubscript{3}$ are identified with a focus on the prevention of cation off-stoichiometry and the sustainment of layer-by-layer growth. In the thus-optimized films the cubic perovskite symmetry is broken by a tetragonal distortion due to epitaxial strain and additional cooperative rotations of the IrO$\textsubscript{6}$ octahedra. As a consequence of the thermodynamic instability of the IrO$\textsubscript{2}$ surface layer, the films unexpectedly undergo a conversion to a SrO termination during growth. In an attempt to disentangle the interplay between spin-orbit and Coulomb interaction the three-dimensional electronic structure of perovskite SrIrO$\textsubscript{3}$ is investigated in a combined experimental and theoretical approach using soft x-ray angle-resolved photoelectron spectroscopy and \textit{ab initio} density functional theory calculations. The experimentally found metallic ground state hosts coherent quasiparticle peaks with a well-defined Fermi surface and is theoretically described by a single half-filled band with effective total angular momentum $J_\text{eff} = 1/2$ only upon incorporation of a sizeable local Coulomb repulsion and -- to a lesser extent -- the broken cubic crystal symmetry in the film. Upon reduction of the SrIrO$\textsubscript{3}$ thickness below a threshold of four unit cells the scales are tipped in favor of a Mott-insulating phase as the on-site Coulomb repulsion surmounts the diminishing kinetic energy upon transition into the two-dimensional regime. Concomitantly, a structural transition occurs because the corner-shared octahedral network between substrate and film imposes constraints upon the IrO$\textsubscript{6}$ octahedral rotations in the thin-film limit. The striking similarity between the quasi-two-dimensional spin-orbit-induced Mott insulator Sr$\textsubscript{2}$IrO$\textsubscript{4}$ and SrO-terminated SrIrO$\textsubscript{3}$ in the monolayer limit underlines the importance of dimensionality for the metal-insulator transition and possibly opens a new avenue towards the realization of exotic superconductivity in iridate compounds. Whether the analogy between SrIrO$\textsubscript{3}$ in the two-dimensional limit and its Ruddlesden-Popper bulk counterparts extends to their complex magnetic properties ultimately remains an open question, although no indications for a remanent (anti)ferromagnetic order were found. The unprecedented observation of an x-ray magnetic circular dichroism at the O~$K$-absorption edge of iridium oxides in an external magnetic field promises deeper insights into the intricate connection between the $J_\text{eff} = 1/2$ pseudospin state, its hybridization with the oxygen ligand states and the magnetic order found in the Ruddlesden-Popper iridates. / In den vergangenen Jahrzehnten waren die Physik korrelierter Elektronen aufgrund starker Coulomb- sowie topologische Physik aufgrund durch Spin-Bahn-Wechselwirkung induzierter Bandinversion die Zugpferde der Festkörperforschung. Während diese zuvor gemeinhin als disjunkt wahrgenommen wurden, setzte sich Anfang der 2010er Jahre die Einsicht durch, dass das Zusammenspiel der ähnlich starken Coulomb- und Spin-Bahn-Wechselwirkung in $5d$ Übergangsmetalloxiden zu unvorhergesehenen Eigenschaften führen kann. Bedingt durch die Entdeckung einer unkonventionellen Mott-isolierenden Phase sowie Vorhersagen exotischer Supraleitung wurde dem geschichteten Perowskit Sr$\textsubscript{2}$IrO$\textsubscript{4}$ besondere Aufmerksamkeit zuteil. Über dessen dreidimensionales Pendant SrIrO$\textsubscript{3}$ ist weniger bekannt, da es anstelle der kubischen Perowskitstruktur eine thermodynamisch stabilere polymorphe Gitterstruktur annimmt. Ziel dieser Thesis ist daher die Synthese von epitaktisch stabilisiertem Perowskit-SrIrO$\textsubscript{3}$ mittels gepulster Laserablation sowie die Untersuchung dessen elektronischer und magnetischer Struktur mit modernsten Röntgenspektroskopiemethoden. In diesem Bestreben werden zunächst die thermodynamischen Bedingungen für das Wachstum von qualitativ hochwertigem SrIrO$\textsubscript{3}$ mit dem Fokus auf der kationischen Stöchiometrie sowie dem Erreichen lagenweisen Schichtwachstums identifiziert. In derart optimierten Filmen wird die kubische Symmetrie von einer tetragonalen Verzerrung aufgrund epitaktischer Verspannung sowie von kooperativen Verdrehungen der IrO$\textsubscript{6}$ Oktaeder gebrochen. Während des Wachstums findet infolge der thermodynamischen Instabilität der obersten IrO$\textsubscript{2}$ Lage eine Umwandlung zu einer SrO-Terminierung der Oberfläche statt. Mit dem Ziel das Zusammenspiel von Spin-Bahn- und Coulomb-Wechselwirkung in SrIrO$\textsubscript{3}$ zu entwirren wird dessen dreidimensionale elektronische Struktur in Kombination von winkelaufgelöster Photoelektronenspektroskopie im weichen Röntgenbereich und \textit{ab initio} Dichtefunktionaltheorie untersucht. Der experimentell beobachtete metallische Grundzustand weist kohärente Quasiteilchenzustände mit wohldefinierter Fermifläche auf und wird theoretisch durch ein halbgefülltes Band mit effektivem Gesamtdrehmoment $J_\text{eff} =1/2$ beschrieben, sofern eine substanzielle lokale Coulombabstoßung sowie - in geringerem Maße - die gebrochene kubische Symmetrie berücksichtigt werden. Bei Schichtdicken unterhalb von vier Einheitszellen neigt sich das Gleichgewicht zugunsten einer Mott-isolierenden Phase, da die lokale Coulombabstoßung die im Zweidimensionalen reduzierte kinetische Energie zunehmend überwiegt. Gleichzeitig findet ein struktureller Übergang statt, da das Netzwerk aus Sauerstoffoktaedern deren Rotationen in dünnen Filmen Randbedingungen auferlegt. Die verblüffende Ähnlichkeit zwischen dem quasi-zweidimensionalen Mott-Isolator Sr$\textsubscript{2}$IrO$\textsubscript{4}$ und SrO-terminiertem Monolagen-SrIrO$\textsubscript{3}$ unterstreicht die Bedeutung der Dimensionalität für den Metall-Isolator-Übergang und eröffnet neue Möglichkeiten zur Realisierung exotischer Supraleitung in Iridaten. Die Frage, ob sich die Analogie zwischen SrIrO$\textsubscript{3}$ im zweidimensionalen Limes und den quasi-zweidimensionalen Ruddlesden-Popper-Iridaten auf deren komplexe magnetische Eigenschaften erstreckt, bleibt schlussendlich offen, gleichwohl keine Hinweise auf eine remanente (anti-)ferromagnetische Ordnung hindeuten. Die bisher erste Beobachtung eines magnetischen Zirkulardichroismus an der O~$K$-Absorptionskante eines Iridiumoxids in einem externen Magnetfeld verspricht tiefere Einsichten in den komplexen Zusammenhang zwischen dem $J_\text{eff} = 1/2$ Pseudospin-Zustand, dessen Hybridisierung mit den Valenzzuständen der Sauerstoffliganden sowie der magnetischen Ordnung in Iridatverbindungen.
16

Annual Report 2008 Institute of Ion Beam Physics and Materials Research

Möller, W., Helm, M., Heera, V., Borany, J. Von January 2009 (has links)
Outstanding scientific results and statistical overview of the Institute of Ion Beam Physics and Materials Research in 2008
17

Arbeitstreffen: Kern- und Teilchenphysik, 4.-7. Oktober 1994, Pirna: Band I-IV

Möller, K., Naumann, L. January 1994 (has links)
nicht vorhanden
18

Biennial Scientific Report 2007-2008 : Volume 1: Advanced Materials Research

Bohnet, C., Bartho, A. January 2010 (has links)
nicht vorhanden
19

Biennial Scientific Report 2007-2008 : Volume 3: Nuclear Safety Research

Bohnet, C., Bartho, A. January 2010 (has links)
nicht vorhanden
20

Bi-Annual Report 2007/08 - Rossendorf Beamline at ESRF (ROBL-CRG)

Scheinost, A. January 2009 (has links)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 6th report covers the period from January 2007 to December 2008. In these two years, 50 peerreviewed papers have been published based on experiments done at the beamline. The average citation index, which increased constantly over the years, has now reached 3.5 (RCH) and 3.0 (MRH), indicating that papers are predominately published in journals with high impact factors. Six exemplary highlight reports on the following pages should demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). Demand for beamtime remains very high as in the previous years, with an average oversubscription rate of 1.8 for ESRF experiments. The attractiveness of our beamline is based upon the high specialization of its two end-stations. RCH is one of only two stations in Europe dedicated to x-ray absorption spectroscopy of actinides and other radionuclides. The INE beamline at ANKA provides superior experimental flexibility and extends to lower energies, including important elements like P and S. In contrast, ROBL-RCH provides a much higher photon flux, hence lower detection limits crucial for environmental samples, and a higher energy range extending to elements like Sb and I. Therefore, both beamlines are highly complementary, covering different aspects of radiochemistry research. Once the MARS beamline at SOLEIL is ready to run radionuclides (>2010), it will cover a third niche (Materials Science of actinides, including irradiated fuel) not accessible for the two other beamlines. The Materials Research Hutch MRH has realized an increasing number of in-situ investigations in the last years. On the one hand thin film systems were characterized during magnetron sputtering. On the other hand diffraction experiments under controlled atmosphere were performed. A high variety of experimental parameters was covered by varying pressure, temperature and atmospheric compositions including highly reactive gases. Furthermore structural investigations were combined with electrical conductivity measurements. These kind of in-situ experiments are the key to monitor and understand reaction mechanism or the influence of process parameters, which are again the basis to tailor materials properties on demand. The core competences of MRH are these experimental possibilities, which make it unique among other diffraction beamlines. In fall 2007, ROBL was reviewed by an international panel on behalf of the ESRF. The very positive panel report recommended a renewal of the contract between ESRF and FZD for the next five years, and a major upgrade of critical optical components of the beamline to keep ROBL competitive for the next decade. The FZD will provide 2 Mio € from 2009 to 2011 for this upgrade, which will be performed in parallel to the major upgrade of the ESRF to minimize the downtime. According to the current plans of the ESRF, our users have to expect that ROBL will have only limited or no operation for several months from August 2011 on. Since July 2004 the beamline is a member of the pooled facilities of ACTINET – European Network of Excellence. In the reported period, RCH has provided 27 % of its inhouse beamtime to perform 11 ACTINET experiments. The success of ACTINET within FP-6 has now led to a renewal of ACTINET within FP-7, running until end of 2011.

Page generated in 0.0189 seconds