• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 50
  • 45
  • Tagged with
  • 334
  • 334
  • 139
  • 139
  • 139
  • 72
  • 36
  • 35
  • 34
  • 34
  • 32
  • 31
  • 30
  • 30
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Exploring the transport properties of the three-dimensional topological insulator material HgTe / Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe

Thienel, Cornelius January 2015 (has links) (PDF)
In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. / In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models.
32

Optical spectroscopy on silicon vacancy defects in silicon carbide / Optische Spektroskopie an Silizium-Fehlstellen in Siliziumkarbid

Fuchs, Franziska January 2015 (has links) (PDF)
This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future. / In dieser Arbeit werden verschiedene Aspekte der Silizium-Fehlstelle in SiC beleuchtet: (1) Die Erzeugung der Defekte durch Bestrahlung, sowohl mit Elektronen als auch Neutronen. Einige optische Eigenschaften wurden ermittelt: die Anregung der Fehlstelle ist im Bereich von 720nm bis 800nm am effizientesten. Das Abklingen der PL zeigt eine charakteristische Lebensdauer des angeregten Zustands von (6.3±0.6)ns. (2) Maßschneidern der Defektdichte meint die kontrollierte Erzeugung von Defekten durch variablen Neutronenfluss. Hier konnte die Defektdichte gezielt über acht Größenordnungen verändert werden. Auf der einen Seite, in der Probe mit der höchsten Defektdichte, konnte das ohnehin schon große PL Signal noch um den Faktor fünf durch Temperprozesse erhöht werden. Auf der anderen Seite konnten in den Proben mit geringer Defektdichte einzelne Defekte mit stabiler nahinfrarot Emission bei Raumtemperatur zweifelsfrei nachgewiesen werden. Ihre Lebensdauer von etwa 7ns bestätigt den Wert aus den transienten Messungen. (3) Auch die elektrische Anregung der Defekte in einer SiC LED Struktur konnte gezeigt werden. (4) Die Untersuchung zeigte zum ersten Mal, dass Silizium-Fehlstellen in SiC Nanokristallen bis hinunter zu einer Größe von ca. 60 nm existieren können. Die Defekte zeigen stabile PL Emission im Nahinfraroten und sogar Magnetresonanz in der 600 nm Fraktion. Zusammenfassend werden in dieser Arbeit zum Einen grundlegende Eigenschaften der Silizium-Fehlstelle in Siliziumkarbid herausgefunden. Zum Anderen können Messungen zur Machbarkeit von verschiedenen Anwendungen sowohl das Potenzial der Fehlstelle in SiC für defektbasierte Anwendungen aufzeigen, als auch die Umsetzbarkeit von z.B. elektrisch betriebenen Einzelphotonenquellen oder Nanosensoren in naher Zukunft bestätigen.
33

Spektroskopie an positionierten III-V-Halbleiterquantenpunkten / Spectroscopy of site-controlled III-V semiconductor quantum dots

Braun, Tristan January 2016 (has links) (PDF)
Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg für die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschlüsselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu können, um eine abhörsichere Übertragung sensibler Daten zu realisieren. Als Lichtquellen dafür eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant für die Entwicklung solch fortschrittlicher Technologien, welche für eine abhörischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle für die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam hauptsächlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterführend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgeführt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorstärke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgeführt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkthöhe durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachträglich bei Temperaturen von 750° C bis 850° C für fünf Minuten ausgeheilt wurden. Anhand polarisationsaufgelöster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Landé g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl höhere Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies lässt darauf schließen, dass eine dickere Bedeckungsschicht zu einer stärkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte für ex-situ Ausheilprozesse führt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgelöster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl über die Untersuchungen des diamagnetischen Koeffizienten als auch über die Analyse der Lebensdauer konnte schließlich die Oszillatorstärke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen ähnliche Ergebnisse. Die höchste Oszillatorstärke \(f_{\chi}=34,7\pm 5,2\) konnte für eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C über den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung über die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorstärke im Vergleich zu den Referenzproben um einem Faktor größer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70% festgestellt werden. Insgesamt betrachtet, lässt sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorstärke nachträglich deutlich erhöhen, wodurch InAs/GaAs-Quantenpunkte noch interessanter für Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabhängigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabhängige Messungen durchgeführt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann Rückschlüsse auf die auftretenden Verlustkanäle in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache für den Intensitätsabfall bei höheren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zustände in der Benetzungsschicht sorgt für die anfängliche Abnahme der Intensität bei niedrigeren Temperaturen. Der starke Abfall bei höheren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungsträger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch für zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensitätsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache für die Zunahme der Linienbreite auf. Für hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten für das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabhängigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inhärente Grenze für die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zunächst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabhängige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungewöhnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsphänomenen in der umgebenden GaInP-Matrix wurden im Mittel über 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erklären lässt. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig für diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine für Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verstärkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu können, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensität aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erhöhung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis für die Realisierung hocheffizienter Einzelphotonenquellen. / At the moment, many scientific groups focus on the development of new technologies which are supposed to lead the way to the commercial use of quantum communication. Particularly in the field of quantum key distribution first success has been achieved. These experiments make use of the fact that it is not possible to generate a perfect copy of a quantum state (Non-cloning theorem). One way to emit non-classical particles is to use semiconductor quantum dots. Furthermore such quantum dots can be easily integrated in complex semiconductor microstructures and are thus especially interesting for the development such advanced technologies, which are mandatory for a secure communication. Based on this background, the objective of the work presented in this thesis was a spectroscopic analysis of semiconductor quantum dots, regarding their potential as a quantum light source for quantum communication. In a dedicated process, amongst others, InAs/GaAs and InP/GaInP quantum dots were positioned deterministically and eventual integrated in a photonic microstructure, which consists of a gold disc and a dielectric mirror. Micro photoluminescence spectroscopy was used as a basic instrument for identifying the emission characteristics. In addition second order photon correlation measurements were performed to provide proof of a quantum light source. Impact of rapid thermal annealing on the emission characteristics of InAs/GaAs quantum dots Micro photoluminescence measurements of different samples in external magnetic fields up to 5 T have been performed in order to analyze the impact of rapid thermal annealing on the electronic properties and the oscillator strength of self-assembled InAs/GaAs quantum dots. The quantum dots were grown in a special procedure whereby the nominal quantum dot height was defined by the thickness of a capping layer. In total, three samples with capping layer thicknesses of 2 nm, 3 nm and 4 nm were processed and afterwards annealed at temperatures of 750° C up to 850° C for five minutes. The Zeeman splitting and the diamagnetic shift could be derived from the taken quantum dot spectra by means of polarization resolved spectroscopy. Hence, the effective Landé g-factors and the diamagnetic coefficient could be determined. The analysis of the Zeeman splitting demonstrated a drastic decrease of the absolute g-factors with increasing annealing temperature as well as thicker capping layers. This yield to the conclusion, that a thicker capping layer leads to a stronger interdifussion of the atoms and an increasing elongation of the quantum dots for ex-situ annealing procedures. The diamagnetic coefficients of the quantum dots rose with higher temperatures, which indicates an expansion of the excitonic wavefunction. Furthermore time resolved micro photoluminescence spectroscopy has been performed in order to assess the lifetime of the quantum dot ensemble. The lifetime decreases clearly with increasing temperatures. Both the investigations of the diamagnetic coefficient and the quantum dot lifetime finally lead to a determination of the oscillator strength and reveal values agreeing within the error bars. The highest oscillator strength \(f_{\chi}=34.7\pm 5.2\) (determined from the diamagnetic shift) could be determined for the sample with a capping layer of d = 3 nm anneald at a temperature of 850° C. In the case of the liftime measurements the oscillator strength exhibits a maximum value of \(f_{\tau}=25.7\pm 5.7\). This corresponds to a distinct enhancement of the oscillator strength of more than two compared to the reference samples. In addition an expansion of the center-of-mass wave function by about 70% has been ascertained. Taken as a whole the oscillator strength of InAs/GaAs quantum dots can be increased significantly by ex-situ rapid thermal annealing, which makes them even more interesting for investigations in the strong coupling regime. Temperature and power dependency of the emission characteristics of site-controlled InAs/GaAs quantum dots In order to investigate the decay process of an exciton in site-controlled quantum dots, temperature and power dependent measurements were performed. Those quantum dots were grown deterministically in a specific procedure on predefined positions. Existing photonic loss channels in the quantum dot were studied by performing temperature series. Hereby two dominant processes causing the decrease of the intensity at higher temperatures were identified. Initially the activation of the electron in the ground state into the surrounding barrier or into delocalized states of the wetting layer leads to a decrease of the intensity in the low temperature regime. However, the strong decrease for higher temperatures is attributed to ionization of the exciton and the subsequent activation of the carriers into the surrounding substrate. The fit yields two different activation energies \(E_{2A}=(102,2\pm 0,4)\) meV and \(E_{2B}=(163,2\pm 1,3)\) meV for two exemplary quantum dots A and B, respectively. Hence, both values correspond with the localization energies of the excitons in the respective quantum dot, which account for 100 meV and 144 meV respectively. Furthermore the analysis of the intensity profiles revealed that acoustical and optical phonons are the main reason for the broadening of the linewidth. The dependency of the linewidth for high temperatures is dominated by the interaction of the excitons with longitudinal optical phonons, where phonon energies of \(E_{LOA}=(30,9\pm 4,8)\) meV for quantum dot A and \(E_{LOB}=(32,2\pm 0,8)\) meV for quantum dot B were determined. Those values are typical for InAs/GaAs material system. In addition, the measurements indicate that the linewidth at low temperatures is caused by spectral diffusion. Optical spectroscopy of site-controlled InP/GaInP quantum dots In addtion site-controlled InP/GaInP quantum dots were investigated by means of optical spectroscopy regarding their use as a quantum light source. At first the emission features of the quantum dots were analyzed in basic experiments. Power and polarization dependent measurements were used to identify excitonic as well as biexcitonic decay processes. Furthermore the investigations of the polarization were exhibiting an unusual high degree of polarization of the quantum dot emission. The excitonic and biexcitonic emission shows a very high degree of linear polarization (\(p_{Mittel}=(93^{+7}_{-9})\)%), which is caused by local composition modulation phenomena in the surrounding GaInP matrix. For this calculation the average value was taken out of 66 quantum dots. In addition the quantum dots exhibited very large fine structure splittings of \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV, which can be explained only with a strong anisotropic quantum dot shape. Second order autocorrelation measurements revealed the non-classical emission character of the exciton and the biexciton. \(g^{(2)}(0)\) values down to 0.08 have been reached. In addition, by performing crosscorrelation measurements the cascaded emission of the biexiton-exciton cascade has been demonstrated for the first time for those structures. These results show the potential of site-controlled InP/GaInP quantum dots as a basic module for quantum light sources especially regarding their use in quantum communication. Realization of a single photon source based on a Tamm-plasmon structure After the previous analysis revealed the potential of the site-controlled InP/GaInP quantum dots acting as a single photon emitter, the following part considers the integration of those quantum dots into a Tamm-plasmon structure to realize an efficient single photon source. These structures consist of a distributed Bragg reflector (DBR) with 30.5 AlGaAs/AlAs mirror pairs and a gold disc with a thickness of only a few ten nanometers. The quantum dots are located between the DBR and the gold disc at an anti-node of the Tamm-plasmon mode. The device was characterized by photoluminescence investigations of a planar Tamm-plasmon structure. Besides excitonic and biexcitonic emission features, the experiments showed the decay of a trion state, which has been confirmed by polarization and correlation measurements. In order to demonstrate an enhancement of the single photon emission due to the coupling to a localized Tamm-plasmon mode, an array of gold discs with varying diameters from 3-6 µm was scanned and the light intensity recorded. At the positions of the gold discs a significant increase of the luminescence could be detected. Investigations in more detail on a single quantum dot tuned into the Tamm-plasmon resonance by adjusting the temperature revealed a maximum emission rate of \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz and with it an efficiency of \((6,95\pm 0,76)\)% of such a single photon source when taking the repetition rate of 82 MHz into account. This is a distinct enhancement of the efficiency compared to quantum dots in bulk material or even to those embedded in planar DBR-resonators. As a consequence of the experiments site-controlled InP/GaInP quantum dots embedded in a Tamm-plasmon structure can be considered as a promising base for the realization of highly efficient single photon sources.
34

Nanolithography on Mercury Telluride / Nanolithographie auf Quecksilber Tellurid

Mühlbauer, Mathias Josef January 2015 (has links) (PDF)
Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, however, is to reliably pattern these heterostructures into advanced nano-devices. Nano-lithography on this material system proves to be challenging because of inherent temperature limitations, its high reactivity with various metals and due to its properties as a topological insulator. The current work gives an insight into why many established semiconductor lithography processes cannot be easily transferred to HgTe while providing alternative solutions. The presented developments include novel ohmic contacts, the prevention of metal sidewalls and redeposition fences in combination with low temperature (80 °C) lithography and an adapted hardmask lithography process utilizing a sacrificial layer. In addition we demonstrate high resolution low energy (2.5 kV) electron beam lithography and present an alternative airbridge gating technique. The feasibility of nano-structures on HgTe quantum wells is exemplarily verified in two separate transport experiments. We are first to realize physically etched quantum point contacts in HgTe/HgCdTe high mobility 2DEGs and to prove their controllability via external top-gate electrodes. So far quantum point contacts have not been reported in TI materials. However, these constrictions are part of many proposals to probe the nature of the helical quantum spin Hall edge channels and are suggested as injector and detector devices for spin polarized currents. To confirm their functionality we performed four-terminal measurements of the point contact conductance as a function of external gate voltage. Our measurements clearly exhibit quantized conductance steps in 2e2/h, which is a fundamental characteristic of quantum point contacts. Furthermore we conducted measurements on the formation and control of collimated electron beams, a key feature to realize an all electrical spin-optic device. In a second study several of the newly developed lithography techniques were implemented to produce arrays of nano-wires on inverted and non-inverted HgTe quantum well samples. These devices were used in order to probe and compare the weak antilocalization (WAL) in these structures as a function of magnetic field and temperature. Our measurements reveal that the WAL is almost an order of magnitude larger in inverted samples. This observation is attributed to the Dirac-like dispersion of the energy bands in HgTe quantum wells. The described lithography has already been successfully implemented and adapted in several published studies. All processes have been optimized to guarantee a minimum effect on the heterostructure’s properties and the sample surface, which is especially important for probing the topological surface states of strained HgTe bulk layers. Our developments therefore serve as a base for continuous progress to further establish HgTe as a topological insulator and give access to new experiments. / Topologische Isolatoren (TIs) beschreiben einen neuartigen Quanten-Aggregatszustand, der derzeit eines der meist beachteten Forschungsfelder in der Festkörperphysik darstellt. Verspannt gewachsene HgTe Schichten, sowie HgTe/HgCdTe Quantentrogstrukturen sind als eines der wenigen TI-Materialsysteme geeignet, um in Transportexperimenten untersucht zu werden. Darüber hinaus bieten HgTe Quantentröge hervorragende Voraussetzungen zur Durchführung von Spintronik-Experimenten. Eine grundlegende Voraussetzung für die meisten Versuche ist die zuverlässige Herstellung komplexer Nanostrukturen in diesen Schichtsystemen. Aufgrund der intrinsischen Temperaturgrenzen, der hohen Reaktivität mit verschiedensten Metallen und nicht zuletzt seiner Eigenschaften als topologischer Isolator, stellt Nanolithographie auf HgTe eine Herausforderung dar. Die vorliegende Arbeit zeigt auf, weshalb viele der in der Halbleitertechnik etablierten Lithographieprozesse nicht einfach auf HgTe übertragbar sind und bietet stattdessen alternative Lösungen. Die vorgestellten Entwicklungen befassen sich unter anderem mit der Herstellung ohmscher Kontakte, der Vermeidung metallischer Seitenwände und Ätzresiduen in Kombination mit Niedertemperatur-Lithographie (≤80 °C) und einem angepassten Hartmasken-Lithographieprozess. Zusätzlich demonstrieren wir hochauflösende Niederenergie-Elektronenstrahllithographie (2.5 kV) und die Strukturierung freitragender Gate-Elektroden. Die Realisierbarkeit von Nanostrukturen in HgTe Quantentrögen wurde anhand zweier unabhängiger Transportexperimente verifiziert. Wir präsentieren die erste Umsetzung physikalisch geätzter Quantenpunktkontakte in hochbeweglichen HgTe/HgCdTe 2DEGs und weisen deren Kontrollierbarkeit mittels externer Topgate-Elektroden nach. Bisher wurden experimentell noch keine Quantenpunktkontakte in TI-Materialien realisiert. Um deren Funktionalität zu bestätigen, wurden Messungen des Punktkontaktleitwerts als Funktion der externen Gate-Spannung durchgeführt. Die Messungen zeigen deutlich quantisierte Leitwertstufen in Abständen von 2e2/h, ein Charakteristikum von QPCs. Darüber hinaus wurden Untersuchungen zur Erzeugung und Kontrolle kollimierter Elektronenstrahlen durchgeführt, einer Schlüsselvoraussetzung zur Umsetzung spinoptischer Bauteile. Für die zweite Studie wurden mehrere der beschriebenen Lithographie- Techniken angewandt, um präzise Anordnungen aus Nanodrähten aus invertierten sowie nicht invertierten Quantentrögen zu erstellen. Mit diesen Proben wurde der Effekt der schwachen Antilokalisierung in Abhängigkeit von Magnetfeld und Temperatur untersucht. Unsere Messungen zeigen, dass die schwache Antilokalisierung in invertierten Proben um fast eine Größenordnung höher ist. Diese Beobachtung kann wiederum der Dirac-artigen Dispersion der Energiebänder in HgTe Quantentrögen zugeschrieben werden. Alle Lithographieprozesse wurden optimiert, um Einflüsse auf die Materialeigenschaften sowie die Probenoberfläche zu minimieren. Dies ist besonders für die Untersuchung der topologischen Oberflächenzustände verspannt gewachsener HgTe-Schichten relevant. Die vorgestellten Entwicklungen dienen dabei als Grundlage, um HgTe weiter als topologischen Isolator zu etablieren und gewähren Zugang zu neuen Experimenten. Die in dieser Arbeit beschriebene Lithographie fand bereits mehrfach Anwendung in verschiedenen veröffentlichten Studien.
35

Quantendynamische Untersuchungen zur Exzitonenlokalisierung und linearen Spektroskopie in molekularen Oligomeren / Quantum dynamical study on excition localization and linear spectroscopy in molecular oligomers

Brüning, Christoph January 2016 (has links) (PDF)
Diese Arbeit befasst sich mit den spektralen Signaturen molekularer Aggregate sowie mit ihrer Wellenpakets- und Populationsdynamik in angeregten Zuständen unter dem Einfluss externer Störungen und photoinduzierter Asymmetrie. Hierzu werden quantendynamische numerische Berechnungen mit der Multi-Configuration Time-Dependent Hartree-Methode durchgeführt, um die angesprochenen Prozesse zu charakterisieren. Durch die Konzentration auf Modellrechnungen sind die qualitativen Ergebnisse dieser Arbeit auf viele Systeme übertragbar. Zunächst widmet sich die Arbeit den linearen UV/Vis-Absorptions- und Emissionsspektren von Aggregaten. Hier zeigt sich, dass die Anzahl der Größen, die ein Absorptionsspektrum bestimmen -- etwa die Anzahl der Chromophore, ihre geometrischen Anordnung und die elektronische Kopplung zwischen ihnen -- zu groß ist, um ihre numerischen Werte eindeutig aus den Spektren bestimmen zu können. Insbesondere können sich die Auswirkungen der Aggregatgröße und der Kopplungsstärke gegenseitig so beeinflussen, dass die Form der Absorptionsbande bei sehr unterschiedlichen Systemen nahezu identisch ist. Daraus ergeben sich Schwierigkeiten bei der Interpretation experimenteller Spektren, insbesondere von selbst-aggregierten Oligomeren, deren Größe unbekannt ist. Es ist daher notwendig, entweder die elektronische Kopplung oder die Anzahl der Monomere in einem Aggregat durch andere experimentelle Methoden unabhängig zu bestimmen. Ist die Aggregatgröße jedoch bekannt, können die Absorptionsspektren sehr wohl zur Bestimmung anderer Eigenschaften des Systems herangezogen werden. Dies wird durch die Untersuchung der Spektren kovalent gebundener zyklischer Aggregate aus drei und vier cis-Indolenin-Squarain-Molekülen als Beispiel für Systeme mit bekannter Größe dargestellt. Das zweite Hauptthema der Arbeit ist die Populationsdynamik in angeregten Zuständen molekularer Aggregate. Dazu werden numerische Rechnungen an Dimeren, Pentameren und Nonameren durchgeführt. Eine Asymmetrie, sei es im System selbst oder am Wellenpaket, das durch die Anregung entsteht, kann dazu führen, dass ein einzelnes Monomer dauerhaft bevorzugt populiert ist. Wenn durch eine externe Störung die Energie des angeregten Zustands bestimmter Monomere für eine gewisse Zeit erhöht ist, kommt es zu einer Lokalisation der Population in diesem energetisch höheren Zustand. In einem System mit weiteren internen Freiheitsgraden wird die Population auf benachbarte Monomere übertragen, wenn der Betrag der Energieverschiebung des gestörten Zustands mit dem Abstand der Schwingungsniveaus zusammenfällt. Der anfängliche Lokalisierungseffekt ist darüber hinaus zustandsspezifisch: Er wird durch die Überlappintegrale der Schwingungskomponenten der Wellenfunktion in den diabatischen angeregten elektronischen Zuständen bestimmt. Durch die Kombination von zwei Laserpulsen kann auch ein Wellenpaket in den angeregten Zuständen erzeugt werden, dessen Symmetrieachsen nicht mit denen der Potentialflächen des Systems zusammenfallen. Dadurch, dass hier die Asymmetrie schon im Wellenpaket vorliegt, kann es auch ohne äußere Störung zu einer Lokalisation der Population auf einem Monomer kommen. / This work studies the spectral signatures of molecular aggregates as well as their excited-state wave-packet and population dynamics under the influence of external perturbations and photo-induced asymmetry. Quantum dynamical numerical calculations employing the Multi-Configuration Time-Dependent Hartee method are performed in order to characterize the aforementioned processes. Concentrating on model calculations, the results of this work can qualitatively be transferred to a variety of different systems. First, linear UV/Vis- absorption and emission spectra of aggregates are investigated. It becomes apparent that the number of quantities which determine an absorption spectrum -- such as the number of chromophores, their geometrical arrangement and the electronic coupling between them -- is too large to uniquely determine their numerical values from the specta. Especially, the effects of the aggregate size and the coupling strength can influence each other in a way such that nearly identical spectra are obtained for vastly different systems. This leads to difficulties in the interpretation of experimental spectra, in particular when investigating self-assembled oligomers whose size is unknown. It is thus necessary to determine either the number of monomers within the Aggregate or their electronic coupling independently via other experimental techniques. If the aggregate size is, however, known, absorption spectra provide a valuable tool for determining other properties of the system under investigation. This is shown by investigating the spectra of covalently linked aggregates comprised of three or four cis-Indolenine Squaraine dye molecules as an example for systems of known size. The second main topic of the thesis is the excited-state population dynamics of molecular aggregates. Here, numerical calculations for dimer, pentamer and nonamer systems are performed. It is shown that any asymmetry, originating from the system itself or from the photo-excited wave-packet, leads to a quasi-permanent enhancement of the population of a single monomer unit. When the energy of the excited states of certain monomers is increased by an external perturbation, the excited-state population is, after a very short time, localized in the state with higher energy. In a system that features additional internal degrees of freedom, the population is transferred to neighboring Monomers if the energy shift of the perturbed state is in resonance with the spacing of the vibrational levels. In addition, the inital localization effect is state-specific as it is determined by the overlap integral of the vibrational wave-function components in the diabatic electronic states. By combining two laser pulses, it is possible to generate an excited-state wave-packet whose axes of symmetry do not coincide with those of the potential energy surfaces of the system. Since, here, the asymmetry is already contained in the wave-packet, localization of the population on a single monomer is possible even without an external perturbation.
36

Gammadensitometrische Gasgehaltsmessungen an einem beheizten Rohrbündel

Franz, R., Hampel, U. 08 May 2013 (has links) (PDF)
Im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten Projektes (Förderkennzeichen 02NUK010A) wurden an einem senkrechten, mit Flüssigkeit umströmten und beheizten Stabbündel gammadensitometrische Gasgehaltsmessungen durchgeführt. Es wurden zwei Messpositionen, zwei Volumenstromraten des umströmenden Fluides, zwei Unterkühlungswerte und elf Wärmestromdichten zur Messung gewählt. Der Bericht umfasst die Beschreibung des Versuchsstandes, die Messmethodik, Ergebnisse und deren Interpretation. Im Detail wird ebenfalls die Messunsicherheit bewertet.
37

Ein Modell zur Beschreibung der Kühlmittelvermischung und seine Anwendung auf die Analyse von Borverdünnungstransienten in Druckwasserreaktoren

Kliem, Sören 16 September 2010 (has links) (PDF)
Es wurde ein Modell zur realistischen Beschreibung der Kühlmittelvermischung innerhalb des Reaktordruckbehälters eines Druckwasserreaktors entwickelt und validiert. Dieses schnell rechnende Modell basiert auf dem Prinzip der linearen Superposition der Antwortfunktionen auf Dirac-Impuls-ähnliche Störungen der Kühlmittelparameter. Es wurde in den gekoppelten Programmkomplex DYN3D/ATHLET als Schnittstelle zwischen dem eindimensionalen Thermohydraulikprogramm ATHLET und dem dreidimensionalen neutronenkinetischen Kernmodell DYN3D eingebunden und simuliert in effizienter Weise die Vermischung des Kühlmittels innerhalb des RDB. Für die Analyse von hypothetischen Borverdünnungsstörfallen wurde eine Methodik entwickelt, die auf dem neuen Modell zur Beschreibung der Kühlmittelvermischung basiert. Diese Methodik besteht aus einer Kombination von stationären und transienten Rechnungen, in denen die Vermischung der deborierten Pfropfen auf dem Weg zum Reaktorkern in realistischer Weise simuliert wird. Über die Variation der Größe des deborierten Kühlmittelpfropfens kann der gewünschte Grad an Konservativität für die Analysen vorgegeben werden. Diese neue Methodik wurde erfolgreich auf zwei verschiedene Borverdünnungsstörfalle angewandt. Neben dem Start der ersten Hauptkühlmittelpumpe bei Vorhandensein eines deborierten Kühlmittelpfropfens im kalten Strang des Primärkreislaufes wurde ein Deborierungsstörfall im Nachkühlbetrieb betrachtet. In beiden Fällen zeigten die Ergebnisse der Parameterstudie für eine generische Kernkonfiguration, dass es selbst bei Annahme des maximal möglichen Pfropfenvolumens zwar zur Rekritikalität des abgeschalteten Reaktors aber nicht zu einer unzulässigen Erhöhung der Hüllrohrtemperatur kommt. Wesentliche Ursache dafür ist die Verwendung realistischer zeitabhängiger Verteilungen der Borkonzentration am Eintritt in jedes Brennelement.
38

Echtzeit-in-situ-Messung der Oberflächenbelegung einer Magnetron-Kathode bei der reaktiven Sputter-Abscheidung

Güttler, D. 16 September 2010 (has links) (PDF)
Reactive Sputtering is a widely used technique in processing of thin compound films. Such films can be sputtered from metal targets, which are comparatively cost efficient. Also the fact that sputtering from metal targets can ccur in the dc mode reduces the cost of the sputtering equipment. To keep the deposition process stable, its necessary to know the effects of target poisoning including its hyteresis behavior. The aim of this work was to nvestigate the evolution of reactive gas coverage on a titanium magnetron target surface, by real time, in-situ ion beam analysis during magnetron sputtering. A cylindrical 2 inch magnetron was used for reactive sputtering of TiN. It was operated in an Ar/N2 gas mixture at achamber pressure of about 3∙10-3 mbar. The argon/nitrogen flux ratio was variated between 0 and 20%. The nitrogen concentration on the target was determinated using the 14N(d, α)12C, nuclear reaction at a deuterium beam energy of 1.8 MeV. Depending on the adjusted nitrogen flow the target incorporation varies between 0 and about 1∙1016 N∙cm-2. Further the expected hysteresis behaviour ofnitrogen partial pressure, target voltage and nitrogen concentration at increasing/decreasing nitrogen gas flow is confirmed. The lateral distribution of nitrogen was measured across the diameter of target surface. In the zone of higher erosion (the \"race track\") the nitrogen concentration is 50% lower than in the middle or the edge of the target. A deposition zone in the center of the target could not be detected. By increasing the nitrogen flow into the chamber a saturation in nitrogen content in the target was found at an Ar/N2 flow ratio of about 10%. Assuming nitrogen implantation with a depth of 2.5 nm under the influence of typical target voltage during magnetron sputtering, this saturation is at a concentration value where stoichiomtric TiN is formed. Within the precision of the measurements, a mobile fraction of nitrogen could not determined. The concentration in the target remains unchanged after switching off the magnetron.
39

Metal Nanoparticles/Nanowires Selfassembly on Ripple Patterned Substrate - Mechanism, Properties and Applications

Ranjan, Mukesh 23 August 2011 (has links) (PDF)
Plasmonic properties of self-assembled silver nanoparticles/nanowires array on periodically patterned Si (100) substrate are reported with special attention on the mechanism of nanoparticles self-assembly. The advantage of this bottom up approach over other self-assembling and lithographic methods is the flexibility to tune array periodicity down to 20 nm with interparticle gaps as low as 5 nm along the ripple. Ripple pattern have shallow modulation (~2 nm) still particles self-assembly was observed in non-shadow deposition. Therefore adatoms diffusion and kinetics is important on ripple surface for the self-assembly. PVD e-beam evaporation method used for deposition has proven to be superior to sputter deposition due to lower incident flux and lower atom energy. It was found that particles self-assembly largely dependent on angle of incidence, substrate temperature, and deposition direction due to ripple asymmetric tilt. Ostwald ripening observed during annealing on ripples substrate has striking dependency on ripple periodicity and was found to be different compared to Ostwald ripening on flat Si surface. In-situ RBS measurements of deposited silver on flat and rippled substrate confirmed different sticking of atoms on the two surfaces. The difference between maximum and minimum of the calculated local flux show a peak at an incidence angle of 70o with respect to surface normal. This explains the best alignment of particles at this angle of incidence compare to others. Self-assembled nanoparticles are optically anisotropic, i.e. they exhibit a direction dependent shift in LSPR. The reason of the observed anisotropy is a direction dependent plasmonic coupling. Different in plane and out of the plane dielectric coefficients calculated by modelling Jones matrix elements, confirms that nanoparticle/nanowire array are biaxial anisotropic (ex ¹ ey ¹ ez). The nanoparticles are predominantly insulating while nanowires are both metallic and insulating depending on the dimension. Silver nanoparticles/nanowires self-aligned on pre-patterned rippled substrate are presented for the first time as an active SERS substrate. Anisotropic SERS response in such arrays is attributed to different field enhancement along and across the ripples. Strong plasmonic coupling in elongated nanoparticles chain results in significantly higher SERS intensity then spherical nanoparticles/nanowires and non-ordered nanoparticles. Higher SERS intensity across the nanowires array in comparison to along the array (bulk silver) confirms electromagnetic field enhancement (hot-junction) is responsible for SERS phenomenon. Self-assembly of cobalt nanoparticle on ripple pattern substrate is also reported. Due to less adatom mobility and higher sticking cobalt self-assembly is possible only at much higher temperature. A strong uniaxial magnetic anisotropy was observed not observed for non ordered cobalt particles.
40

Fate of Topological States of Matter in the Presence of External Magnetic Fields / Schicksal von topologischen Zuständen in der Gegenwart von externen magnetischen Feldern

Böttcher, Jan Frederic January 2021 (has links) (PDF)
The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe. Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a $\mathbb{Z}$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase. A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the $8 \times 8$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk $p$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk $p$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion. Furthermore, we employ the numerical implementation of the $8\times 8$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe. / Der Quanten-Hall (QH) Effekt, welcher in einem zwei-dimensionalen (2D) Elektronengas durch ein externes Magnetfeld erzeugt werden kann, ebnete den Weg für topologische Konzepte in der Physik der kondensierten Materie. Während der QH Effekt aus diesem Grund nicht ohne Landau Level existieren kann, gibt es eine Vielzahl von neuartigen topologischen Phasen, die auch in der Abwesenheit von Magnetfeldern existieren können. Zum Beispiel stellen die Quanten-Spin-Hall (QSH), die Quanten-Anomale-Hall (QAH) und die drei-dimensionale (3D) topologische Isolator-Phase isolierende, topologische Phasen dar, die Ihre nicht-triviale Topologie einer invertierten Bandstruktur verdanken. Letztere wird durch eine starke Spin-Bahn Wechselwirkung, oder im Allgemeinen durch starke relativistische Korrekturen, erzeugt. Das Hauptziel dieser Thesis ist es dabei das Schicksal dieser bereits bestehenden topologischen Zustände in Magnetfeldern zu erforschen und deren Verbindungen zu Quantenanomalien aufzuzeigen. In diesem Zusammenhang werden wir insbesondere die Realisierung der Paritätsanomalie in Festkörpersystemen diskutieren. Weitergehend wenden wir Bandstruktur-Engineering an, d.h. die Veränderung der Quantentrogdicke, der Verspannung und der Materialkomposition, um die vielfältigen topologischen Eigenschaften des topologischen Isolators (TIs) HgTe zu manipulieren und zu untersuchen. Wie die QH Phase, zeichnet sich die QAH Phase durch unidirektional propagierende, metallische Randkanäle aus. Aber im Vergleich zur QH Phase, kann sie auch ohne Landau Level existieren. Die QAH Phase stellt daher ein Kondensierte-Materie-Analogon zur Paritätsanomalie dar. Wir zeigen, dass diese Verbindung es uns ermöglicht in der Gegenwart eines Magnetfelds zwischen QH und QAH Zuständen zu unterscheiden. Damit widerlegen wir den weitverbreiten Glauben, dass diese zwei topologischen Phasen nicht unterschieden werden können, da beide durch eine $\mathbb{Z}$ topologische Invariante beschrieben sind. Etwas genauer gesagt, zeigen wir, dass die QAH Topologie in einer besonderen topologischen Invarianten kodiert bleibt, der spektralen Asymmetrie. Diese quantifiziert die Differenz in der Anzahl von Zuständen in Leitungs- und Valenzbändern. Indem wir die effektive Wirkung eines QAH Isolators im Magnetfeld herleiten, zeigen wir, dass die spektrale Asymmetrie dabei mit einem einzigartigen Chern-Simons Term verbunden ist, welcher die Information über die QAH Randkanäle beinhaltet. Wenn ein QAH Isolator einem externen Magnetfeld ausgesetzt wird, kann dies zur Bildung von gegenläufigen QH und QAH Randkanälen führen. Diese helikalartigen Randzustände besitzen exotische Eigenschaften, die es uns ermöglichen QH und QAH Phasen zu unterscheiden. Unsere Ergebnisse sind insbesondere für paramagnetische TIs von Bedeutung, da für diese ein externes Magnetfeld von Nöten ist, um die QAH Phase zu induzieren. Ein Nebenprodukt der Bandinversion ist die Bildung von zusätzlichen Extrema in der Dispersion des Valenzbands bei großen Impulsen (oft auch als `Kamelrücken' bezeichnet). Wir entwickeln eine numerische Implementierung des $8 \times 8$ Kane Modells um die Signaturen des Kamelrückens in (Hg,Mn)Te Quantentrögen zu untersuchen. Indem die Quantentrogdicke und die Mn-Konzentration variiert wird, zeigen wir, dass die Klasse von topologisch nicht-trivialen Materialien weiter in direkte und indirekte TIs unterteilt werden kann. Für direkte TIs mit $p$-Ladungsträgerdichten, zeigen wir, dass die Anheftung des chemischen Potentials an den Kamelrücken zu einem Beginn von QH-Plateaus bei ungewöhnlich kleinen Magnetfeldern (zweistelliger mT-Bereich) führen kann. Im Gegensatz dazu verhindert der Kamelrücken bei indirekten TIs die Beobachtung von QH Plateaus im $p$-Bereich bis zu großen Magnetfeldern (einige Tesla). Diese Ergebnisse erlauben es uns jüngste experimentelle Beobachtungen in (Hg,Mn)Te Quantentrögen der Existenz des Kamelrückens zuzuschreiben. Obwohl sich unsere Diskussion dabei auf (Hg,Mn)Te beschränkt, sollte sich unser Modell leicht auch auf andere topologische Materialien mit einer kamelartigen Struktur im Valenzband übertragen lassen. Zusätzlich haben wir die numerische Implementierung des $8 \times 8$ Kane Modells verwendet, um den Übergang von einer 2D QSH zu einer 3D TI Phase in verspannten HgTe Quantentrögen zu untersuchen. Diese Halbleitermaterialien zeichnen sich durch 2D topologische Oberflächenzustände an Grenzflächen aus, welche, wie wir zeigen, sehr sensitiv für die lokale Kristallsymmetrie des Gitters und elektrostatische Ladung sind. Wir bestimmen die klassische Zyklotronfrequenz der Oberflächenelektronen und vergleichen diese mit experimentellen Messungen an verspannten HgTe Qunatentrögen.

Page generated in 0.0411 seconds