• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 674
  • 608
  • 290
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1572
  • 1572
  • 885
  • 872
  • 872
  • 223
  • 181
  • 166
  • 120
  • 117
  • 115
  • 113
  • 113
  • 109
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Road Condition Mapping by Integration of Laser Scanning, RGB Imaging and Spectrometry

Miraliakbari, Alvand 16 August 2017 (has links)
Roads are important infrastructure and are primary means of transportation. Control and maintenance of roads are substantial as the pavement surface deforms and deteriorates due to heavy load and influences of weather. Acquiring detailed information about the pavement condition is a prerequisite for proper planning of road pavement maintenance and rehabilitation. Many companies detect and localize the road pavement distresses manually, either by on-site inspection or by digitizing laser data and imagery captured by mobile mapping. The automation of road condition mapping using laser data and colour images is a challenge. Beyond that, the mapping of material properties of the road pavement surface with spectrometers has not yet been investigated. This study aims at automatic mapping of road surface condition including distress and material properties by integrating laser scanning, RGB imaging and spectrometry. All recorded data are geo-referenced by means of GNSS/ INS. Methods are developed for pavement distress detection that cope with a variety of different weather and asphalt conditions. Further objective is to analyse and map the material properties of the pavement surface using spectrometry data. No standard test data sets are available for benchmarking developments on road condition mapping. Therefore, all data have been recorded with a mobile mapping van which is set up for the purpose of this research. The concept for detecting and localizing the four main pavement distresses, i.e. ruts, potholes, cracks and patches is the following: ruts and potholes are detected using laser scanning data, cracks and patches using RGB images. For each of these pavement distresses, two or more methods are developed, implemented, compared to each other and evaluated to identify the most successful method. With respect to the material characteristics, spectrometer data of road sections are classified to indicate pavement quality. As a spectrometer registers almost a reflectivity curve in VIS, NIR and SWIR wavelength, indication of aging can be derived. After detection and localization of the pavement distresses and pavement quality classes, the road condition map is generated by overlaying all distresses and quality classes. As a preparatory step for rut and pothole detection, the road surface is extracted from mobile laser scanning data based on a height jump criterion. For the investigation on rut detection, all scanlines are processed. With an approach based on iterative 1D polynomial fitting, ruts are successfully detected. For streets with the width of 6 m to 10 m, a 6th order polynomial is found to be most suitable. By 1D cross-correlation, the centre of the rut is localized. An alternative method using local curvature shows a high sensitivity to the shape and width of a rut and is less successful. For pothole detection, the approach based on polynomial fitting generalized to two dimensions. As an alternative, a procedure using geodesic morphological reconstruction is investigated. Bivariate polynomial fitting encounters problems with overshoot at the boundary of the regions. The detection is very successful using geodesic morphology. For the detection of pavement cracks, three methods using rotation invariant kernels are investigated. Line Filter, High-pass Filter and Modified Local Binary Pattern kernels are implemented. A conceptual aspect of the procedure is to achieve a high degree of completeness. The most successful variant is the Line Filter for which the highest degree of completeness of 81.2 % is achieved. Two texture measures, the gradient magnitude and the local standard deviation are employed to detect pavement patches. As patches may differ with respect to homogeneity and may not always have a dark border with the intact pavement surface, the method using the local standard deviation is more suitable for detecting the patches. Linear discriminant analysis is utilized for asphalt pavement quality analysis and classification. Road pavement sections of ca. 4 m length are classified into two classes, namely: “Good” and “Bad” with the overall accuracy of 77.6 %. The experimental investigations show that the developed methods for automatic distress detection are very successful. By 1D polynomial fitting on laser scanlines, ruts are detected. In addition to ruts also pavement depressions like shoving can be revealed. The extraction of potholes is less demanding. As potholes appear relatively rare in the road networks of a city, the road segments which are affected by potholes are selected interactively. While crack detection by Line Filter works very well, the patch detection is more challenging as patches sometimes look very similar to the intact surface. The spectral classification of pavement sections contributes to road condition mapping as it gives hints on aging of the road pavement. / Straßen bilden die primären Transportwege für Personen und Güter und sind damit ein wichtiger Bestandteil der Infrastruktur. Der Aufwand für Instandhaltung und Wartung der Straßen ist erheblich, da sich die Fahrbahnoberfläche verformt und durch starke Belastung und Wettereinflüsse verschlechtert. Die Erfassung detaillierter Informationen über den Fahrbahnzustand ist Voraussetzung für eine sachgemäße Planung der Fahrbahnsanierung und -rehabilitation. Viele Unternehmen detektieren und lokalisieren die Fahrbahnschäden manuell entweder durch Vor-Ort-Inspektion oder durch Digitalisierung von Laserdaten und Bildern aus mobiler Datenerfassung. Eine Automatisierung der Straßenkartierung mit Laserdaten und Farbbildern steht noch in den Anfängen. Zudem werden bisher noch nicht die Alterungszustände der Asphaltdecke mit Hilfe der Spektrometrie bewertet. Diese Studie zielt auf den automatischen Prozess der Straßenzustandskartierung einschließlich der Straßenschäden und der Materialeigenschaften durch Integration von Laserscanning, RGB-Bilderfassung und Spektrometrie ab. Alle aufgezeichneten Daten werden mit GNSS / INS georeferenziert. Es werden Methoden für die Erkennung von Straßenschäden entwickelt, die sich an unterschiedliche Datenquellen bei unterschiedlichem Wetter- und Asphaltzustand anpassen können. Ein weiteres Ziel ist es, die Materialeigenschaften der Fahrbahnoberfläche mittels Spektrometrie-Daten zu analysieren und abzubilden. Derzeit gibt es keine standardisierten Testdatensätze für die Evaluierung von Verfahren zur Straßenzustandsbeschreibung. Deswegen wurden alle Daten, die in dieser Studie Verwendung finden, mit einem eigens für diesen Forschungszweck konfigurierten Messfahrzeug aufgezeichnet. Das Konzept für die Detektion und Lokalisierung der wichtigsten vier Arten von Straßenschäden, nämlich Spurrillen, Schlaglöcher, Risse und Flickstellen ist das folgende: Spurrillen und Schlaglöcher werden aus Laserdaten extrahiert, Risse und Flickstellen aus RGB- Bildern. Für jede dieser Straßenschäden werden mindestens zwei Methoden entwickelt, implementiert, miteinander verglichen und evaluiert um festzustellen, welche Methode die erfolgreichste ist. Im Hinblick auf die Materialeigenschaften werden Spektrometriedaten der Straßenabschnitte klassifiziert, um die Qualität des Straßenbelages zu bewerten. Da ein Spektrometer nahezu eine kontinuierliche Reflektivitätskurve im VIS-, NIR- und SWIR-Wellenlängenbereich aufzeichnet, können Merkmale der Asphaltalterung abgeleitet werden. Nach der Detektion und Lokalisierung der Straßenschäden und der Qualitätsklasse des Straßenbelages wird der übergreifende Straßenzustand mit Hilfe von Durchschlagsregeln als Kombination aller Zustandswerte und Qualitätsklassen ermittelt. In einem vorbereitenden Schritt für die Spurrillen- und Schlaglocherkennung wird die Straßenoberfläche aus mobilen Laserscanning-Daten basierend auf einem Höhensprung-Kriterium extrahiert. Für die Untersuchung zur Spurrillen-Erkennung werden alle Scanlinien verarbeitet. Mit einem Ansatz, der auf iterativer 1D-Polynomanpassung basiert, werden Spurrillen erfolgreich erkannt. Für eine Straßenbreite von 8-10m erweist sich ein Polynom sechsten Grades als am besten geeignet. Durch 1D-Kreuzkorrelation wird die Mitte der Spurrille erkannt. Eine alternative Methode, die die lokale Krümmung des Querprofils benutzt, erweist sich als empfindlich gegenüber Form und Breite einer Spurrille und ist weniger erfolgreich. Zur Schlaglocherkennung wird der Ansatz, der auf Polynomanpassung basiert, auf zwei Dimensionen verallgemeinert. Als Alternative wird eine Methode untersucht, die auf der Geodätischen Morphologischen Rekonstruktion beruht. Bivariate Polynomanpassung führt zu Überschwingen an den Rändern der Regionen. Die Detektion mit Hilfe der Geodätischen Morphologischen Rekonstruktion ist dagegen sehr erfolgreich. Zur Risserkennung werden drei Methoden untersucht, die rotationsinvariante Kerne verwenden. Linienfilter, Hochpassfilter und Lokale Binäre Muster werden implementiert. Ein Ziel des Konzeptes zur Risserkennung ist es, eine hohe Vollständigkeit zu erreichen. Die erfolgreichste Variante ist das Linienfilter, für das mit 81,2 % der höchste Grad an Vollständigkeit erzielt werden konnte. Zwei Texturmaße, nämlich der Betrag des Grauwert-Gradienten und die lokale Standardabweichung werden verwendet, um Flickstellen zu entdecken. Da Flickstellen hinsichtlich der Homogenität variieren können und nicht immer eine dunkle Grenze mit dem intakten Straßenbelag aufweisen, ist diejenige Methode, welche die lokale Standardabweichung benutzt, besser zur Erkennung von Flickstellen geeignet. Lineare Diskriminanzanalyse wird zur Analyse der Asphaltqualität und zur Klassifikation benutzt. Straßenabschnitte von ca. 4m Länge werden zwei Klassen („Gut“ und „Schlecht“) mit einer gesamten Accuracy von 77,6 % zugeordnet. Die experimentellen Untersuchungen zeigen, dass die entwickelten Methoden für die automatische Entdeckung von Straßenschäden sehr erfolgreich sind. Durch 1D Polynomanpassung an Laser-Scanlinien werden Spurrillen entdeckt. Zusätzlich zu Spurrillen werden auch Unebenheiten des Straßenbelages wie Aufschiebungen detektiert. Die Extraktion von Schlaglöchern ist weniger anspruchsvoll. Da Schlaglöcher relativ selten in den Straßennetzen von Städten auftreten, werden die Straßenabschnitte mit Schlaglöchern interaktiv ausgewählt. Während die Rissdetektion mit Linienfiltern sehr gut funktioniert, ist die Erkennung von Flickstellen eine größere Herausforderung, da Flickstellen manchmal der intakten Straßenoberfläche sehr ähnlich sehen. Die spektrale Klassifizierung der Straßenabschnitte trägt zur Straßenzustandsbewertung bei, indem sie Hinweise auf den Alterungszustand des Straßenbelages liefert.
382

Swimming pool water treatment with conventional and alternative water treatment technologies

Skibinski, Bertram 22 February 2017 (has links)
To mitigate microbial activity in swimming pools and to assure hygienic safety for bathers, pool systems have a re-circulating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with organic matter (OM) present in pool water to form potentially harmful disinfection by-products (DBP). In this thesis, the treatment performance of different combinations of conventional and novel treatment processes was compared using a pilot scale swimming pool model that was operated under reproducible and fully controlled conditions. The quality of the pool water was determined in means of volatile DBPs and the concentration and composition of dissolved organic carbon (DOC). Further, overall apparent reaction rates for the removal of monochloramine (MCA), a DBP found in pool water, in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system operated under conditions typical for swimming pool water treatment. The reaction rates as well as the type of reaction products formed were correlated with physico-chemical properties of the tested GACs.
383

Geochemische Prozesse in Halden des Kupferschieferbergbaus im südöstlichen Harzvorland

Mibus, Jens-Uwe 04 May 2001 (has links)
Es werden Prozesse der Verwitterung und des Stoffaustrages aus Halden des Kupferschieferbergbaus untersucht. An zwei Halden unterschiedlichen Typs und Alters wurden mineralogische und geochemische Untersuchungen durchgeführt. Die Ergebnisse belegen eine geringe Mobilität der Schwermetalle in den älteren Armerzhalden. In den modernen Großhalden stellt die Salinität ein mobilisierendes Moment für die Metalle dar. Aus den erhobenen standort- und stoffspezifischen Daten wurden unter Einbeziehung des Ionenwechselwirkungsansatzes nach PITZER geochemische Modellvorstellungen entwickelt, die eine adäquate Beschreibung der Lösungs- und Mischungsprozesse in der Halde sowie eine Prognose der künftigen Sickerwasserqualität erlauben. Die Ergebnisse werden im Hinblick auf die Umweltrelevanz und Möglichkeiten des weiteren Umgangs mit den Halden diskutiert.
384

Quantitative petrographic investigations of porphyritic rhyolitic laccoliths of the Halle Volcanic Complex, Germany

Mock, Alexander 02 July 2004 (has links)
Felsic phenocrysts of the laccoliths have straight size distributions (characteristic lengths 3.4 to 36 mm) and R-values from 1.34 to 0.78 (randomly distributed, no touching frameworks). Laccoliths have crystallinities from 10 to 30%. Textural coarsening possibly played a role in crystallization history. Serial sectioning reveals true shapes, sizes and three dimensional size distributions, non-touching frameworks, aspect ratios from 1.7:1.5:1 to 8.7:1.9:1 and a minimum sampling size of ~200 crystals. Different textural varieties develop late in system evolution and differed in density (~1%), viscosity and, thus, level of emplacement. Phenocryst populations formed on a timescale between 10 days and 2000 years, growth during emplacement is negligible. Models for filling and cooling of laccoliths suggest timescales from few 100 to ~20000 years. Contacts of laccoliths appear brecciated and sometimes show intercalation of magma and host sediment under ductile deformation. Dimensions of laccoliths plot in the field for such intrusions on a logarithmic width vs. thickness plot. Laccoliths intruded as distinct magma batches. More laccoliths than recognised before can be distinguished. Comparing felsic laccolith complexes in Late Palaeozoic transtensional basins, gives rise to new types of laccolith complexes termed Donnersberg and Halle type.
385

Numerical simulation of production from tight-gas reservoirs by advanced stimulation technologies

Friedel, Torsten 06 July 2004 (has links)
The present thesis focusses on two main issues: (i) the development of a multi-phase simulation tool for the characteristics of tight-gas reservoirs, and (ii) the investigation of advanced stimulation techniques. The latter mainly implies the analysis of certain damaging mechanisms, as well as the derivation of general modelling guidelines for fractured wells and underbalanced drilling. A special simulation tool is developed, realised in a Fortran-MATLAB coupling. The numerical model is based on the control-volume method with finite differences. It accounts for inertial non-Darcy effects, non-Newtonian fluid rheology and stress dependency of permeability via a simplified approach. The discretisation framework is fully unstructured, using the connection list approach and the common two-point flow stencil. Wells and boundary conditions can be handled very flexible in the code. Contrary to conventional treatment in simulators, wells are discretely included in the simulator. Inertial non-Darcy flow and stress dependency of reservoir permeability are shown to affect the accuracy of simulation models, despite low gas rates. Considering a realistic scenario, with non-Darcy flow and permeability (stress) dependent non-Darcy flow coefficients, stress dependency of reservoir permeability and fracture closure, a total reduction of 40 % is possible in a 10 year production period under realistic conditions. New type-curves are presented for non-Darcy flow in fracture and reservoir, allowing for the determination of non-Darcy flow related parameters. The stress sensitivity of tight-gas rocks is crucial when simulating such reservoirs. The stress dependency of the reservoir permeability impacts the productivity to a much higher degree than the fracture closure. A two-phase model is presented for the simulation of cleanup processes in terms of load water recovery. The fracturing fluid is treated as the water phase. The load water, causing hydraulic damage, hardly curtails productivity. To get considerable reductions in productivity, permeability in the fracture vicinity needs to be severely impaired. Due to the flow pattern, fractured wells are generally less sensitive against near wellbore damage than radial wells. An enhanced three-phase cleanup model is presented for the investigations of the polymer gel cleanup, incorporating a yield power law rheology (the Herschel-Bulkley model). The combined occurrence of loadwater recovery including capillary forces and the gel cleanup, are investigated for the first time. First results indicate that both processes are only weakly coupled. A new simulation methodology is presented to investigate underbalanced drilling, taking into account multi-phase reservoir flow with capillary forces. A sensitivity analysis points out that the degree of water encroachment is the key factor for a successful UBD operation. Countercurrent imbibition, causing water encroachment is also analysed. Hydraulic damage turns out to be far more pronounced in tight-gas formations.
386

Vertical Seismic Profiling in the Krafla Geothermal Field, NE-Iceland

Kästner, Felix 18 February 2016 (has links)
A VSP test experiment at the high temperature geothermal field Krafla in NE-Iceland has been carried out. In two boreholes a zero-, far-, and multi-offset VSP were applied to assess the applicability of VSP as a method for delineating subsurface structures like magmatic bodies, zones of supercritical fluids, superheated steam, and high permeability in volcanic geothermal fields. Because of high well temperatures (>150°C) and high attenuating surface layers, challenging field preparations were necessary. Three-component seismic data were recorded with a sufficient signal-to-noise ratio and dominant signal frequencies around 20 Hz and 40 Hz, down to 2200 m depth, for air gun and explosive sources, respectively. As a result, the data provide a good basis for several processing and imaging techniques. As part of this Master\'s thesis, standard and novel processing techniques of a subset of the data (zero and far-offset VSP in a single well) have been tested and show promising results in accordance with the lithology from well data. Besides velocity profiles and a corridor stack for both P- and S-waves were determined, a 3D Kirchhoff depth migration and Fresnel volume migration have been applied and tested. Already for a single source location, results show structures in the vicinity and below the well, and it can be assumed that further interpretation and data integration will provide a great potential in addition to hitherto applied teleseismic and potential methods. Especially, for geothermal sites it has been shown, that VSP can be applied and provide information of geometries where dipping faults and fracture zones are expected. The research leading to these results has received funding from the European Community\'s Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).
387

Gefahrenkarten - ein Instrument zur Risikoabschätzung infolge eines hypothetischen Talsperrenbruches

Bornschein, Antje 05 March 2007 (has links)
Dam failures and the following emptying of the reservoir are very seldom. But such catastrophes caused significant damages in the past. The related risk has to consider as high despite the high return period. The paper describes the development of hazard maps showing the dimension of inundation in the downstream region of the dam due to a potential failure. The needed data and possible used software for the dam break flood simulation were discussed. A dam break occurred in the catchment area of the Müglitz river in the Ore mountains during the flood 2002 is described. / Das Versagen einer Talsperre mit einer sich anschließenden Entleerung des Stauraumes ist sehr selten. Jedoch zogen solche Ereignisse in der Vergangenheit immer große Schäden nach sich, so dass trotz der geringen Eintrittswahrscheinlichkeit das Risiko als hoch einzuschätzen ist. Der Beitrag behandelt die Erstellung von Gefahrenkarten, die Auskunft darüber geben, wie groß die zu erwartende Überflutung infolge eines Bruches eines Absperrbauwerkes sein könnte. Dabei soll auf die zu ermittelnden Ausgangsdaten ebenso wie auf die zur Verfügung stehende Software zur Simulation der Ausbreitung von Talsperrenbruchwellen eingegangen werden. Als Fallbeispiel wird auf einen Dammbruch während des Hochwassers 2002 im Einzugsgebiet der Müglitz im Erzgebirge eingegangen.
388

Geometrische und stochastische Modelle für die integrierte Auswertung terrestrischer Laserscannerdaten und photogrammetrischer Bilddaten: Geometrische und stochastische Modelle für die integrierte Auswertung terrestrischer Laserscannerdaten und photogrammetrischer Bilddaten

Schneider, Danilo 13 November 2008 (has links)
Terrestrische Laserscanner finden seit einigen Jahren immer stärkere Anwendung in der Praxis und ersetzen bzw. ergänzen bisherige Messverfahren, oder es werden neue Anwendungsgebiete erschlossen. Werden die Daten eines terrestrischen Laserscanners mit photogrammetrischen Bilddaten kombiniert, ergeben sich viel versprechende Möglichkeiten, weil die Eigenschaften beider Datentypen als weitestgehend komplementär angesehen werden können: Terrestrische Laserscanner erzeugen schnell und zuverlässig dreidimensionale Repräsentationen von Objektoberflächen von einem einzigen Aufnahmestandpunkt aus, während sich zweidimensionale photogrammetrische Bilddaten durch eine sehr gute visuelle Qualität mit hohem Interpretationsgehalt und hoher lateraler Genauigkeit auszeichnen. Infolgedessen existieren bereits zahlreiche Ansätze, sowohl software- als auch hardwareseitig, in denen diese Kombination realisiert wird. Allerdings haben die Bildinformationen bisher meist nur ergänzenden Charakter, beispielsweise bei der Kolorierung von Punktwolken oder der Texturierung von aus Laserscannerdaten erzeugten Oberflächenmodellen. Die konsequente Nutzung der komplementären Eigenschaften beider Sensortypen bietet jedoch ein weitaus größeres Potenzial. Aus diesem Grund wurde im Rahmen dieser Arbeit eine Berechnungsmethode – die integrierte Bündelblockausgleichung – entwickelt, bei dem die aus terrestrischen Laserscannerdaten und photogrammetrischen Bilddaten abgeleiteten Beobachtungen diskreter Objektpunkte gleichberechtigt Verwendung finden können. Diese Vorgehensweise hat mehrere Vorteile: durch die Nutzung der individuellen Eigenschaften beider Datentypen unterstützen sie sich gegenseitig bei der Bestimmung von 3D-Objektkoordinaten, wodurch eine höhere Genauigkeit erreicht werden kann. Alle am Ausgleichungsprozess beteiligten Daten werden optimal zueinander referenziert und die verwendeten Aufnahmegeräte können simultan kalibriert werden. Wegen des (sphärischen) Gesichtsfeldes der meisten terrestrischen Laserscanner von 360° in horizontaler und bis zu 180° in vertikaler Richtung bietet sich die Kombination mit Rotationszeilen-Panoramakameras oder Kameras mit Fisheye-Objektiv an, weil diese im Vergleich zu zentralperspektiven Kameras deutlich größere Winkelbereiche in einer Aufnahme abbilden können. Grundlage für die gemeinsame Auswertung terrestrischer Laserscanner- und photogrammetrischer Bilddaten ist die strenge geometrische Modellierung der Aufnahmegeräte. Deshalb wurde für terrestrische Laserscanner und verschiedene Kameratypen ein geometrisches Modell, bestehend aus einem Grundmodell und Zusatzparametern zur Kompensation von Restsystematiken, entwickelt und verifiziert. Insbesondere bei der Entwicklung des geometrischen Modells für Laserscanner wurden verschiedene in der Literatur beschriebene Ansätze berücksichtigt. Dabei wurde auch auf von Theodoliten und Tachymetern bekannte Korrekturmodelle zurückgegriffen. Besondere Bedeutung innerhalb der gemeinsamen Auswertung hat die Festlegung des stochastischen Modells. Weil verschiedene Typen von Beobachtungen mit unterschiedlichen zugrunde liegenden geometrischen Modellen und unterschiedlichen stochastischen Eigenschaften gemeinsam ausgeglichen werden, muss den Daten ein entsprechendes Gewicht zugeordnet werden. Bei ungünstiger Gewichtung der Beobachtungen können die Ausgleichungsergebnisse negativ beeinflusst werden. Deshalb wurde die integrierte Bündelblockausgleichung um das Verfahren der Varianzkomponentenschätzung erweitert, mit dem optimale Beobachtungsgewichte automatisch bestimmt werden können. Erst dadurch wird es möglich, das Potenzial der Kombination terrestrischer Laserscanner- und photogrammetrischer Bilddaten vollständig auszuschöpfen. Zur Berechnung der integrierten Bündelblockausgleichung wurde eine Software entwickelt, mit der vielfältige Varianten der algorithmischen Kombination der Datentypen realisiert werden können. Es wurden zahlreiche Laserscannerdaten, Panoramabilddaten, Fisheye-Bilddaten und zentralperspektive Bilddaten in mehreren Testumgebungen aufgenommen und unter Anwendung der entwickelten Software prozessiert. Dabei wurden verschiedene Berechnungsvarianten detailliert analysiert und damit die Vorteile und Einschränkungen der vorgestellten Methode demonstriert. Ein Anwendungsbeispiel aus dem Bereich der Geologie veranschaulicht das Potenzial des Algorithmus in der Praxis. / The use of terrestrial laser scanning has grown in popularity in recent years, and replaces and complements previous measuring methods, as well as opening new fields of application. If data from terrestrial laser scanners are combined with photogrammetric image data, this yields promising possibilities, as the properties of both types of data can be considered mainly complementary: terrestrial laser scanners produce fast and reliable three-dimensional representations of object surfaces from only one position, while two-dimensional photogrammetric image data are characterised by a high visual quality, ease of interpretation, and high lateral accuracy. Consequently there are numerous approaches existing, both hardware- and software-based, where this combination is realised. However, in most approaches, the image data are only used to add additional characteristics, such as colouring point clouds or texturing object surfaces generated from laser scanner data. A thorough exploitation of the complementary characteristics of both types of sensors provides much more potential. For this reason a calculation method – the integrated bundle adjustment – was developed within this thesis, where the observations of discrete object points derived from terrestrial laser scanner data and photogrammetric image data are utilised equally. This approach has several advantages: using the individual characteristics of both types of data they mutually strengthen each other in terms of 3D object coordinate determination, so that a higher accuracy can be achieved; all involved data sets are optimally co-registered; and each instrument is simultaneously calibrated. Due to the (spherical) field of view of most terrestrial laser scanners of 360° in the horizontal direction and up to 180° in the vertical direction, the integration with rotating line panoramic cameras or cameras with fisheye lenses is very appropriate, as they have a wider field of view compared to central perspective cameras. The basis for the combined processing of terrestrial laser scanner and photogrammetric image data is the strict geometric modelling of the recording instruments. Therefore geometric models, consisting of a basic model and additional parameters for the compensation of systematic errors, was developed and verified for terrestrial laser scanners and different types of cameras. Regarding the geometric laser scanner model, different approaches described in the literature were considered, as well as applying correction models known from theodolites and total stations. A particular consideration within the combined processing is the definition of the stochastic model. Since different types of observations with different underlying geometric models and different stochastic properties have to be adjusted simultaneously, adequate weights have to be assigned to the measurements. An unfavourable weighting can have a negative influence on the adjustment results. Therefore a variance component estimation procedure was implemented in the integrated bundle adjustment, which allows for an automatic determination of optimal observation weights. Hence, it becomes possible to exploit the potential of the combination of terrestrial laser scanner and photogrammetric image data completely. For the calculation of the integrated bundle adjustment, software was developed allowing various algorithmic configurations of the different data types to be applied. Numerous laser scanner, panoramic image, fisheye image and central perspective image data were recorded in different test fields and processed using the developed software. Several calculation alternatives were analysed, demonstrating the advantages and limitations of the presented method. An application example from the field of geology illustrates the potential of the algorithm in practice.
389

Zur Realisierung eines terrestrischen Referenzsystems in globalen und regionalen GPS-Netzen

Rülke, Axel 10 July 2009 (has links)
Die geodätischen Beobachtungsverfahren leisten auf verschiedene Weise Beiträge zur Erforschung des Systems Erde: Einerseits beobachten sie die rezenten Prozesse und ihre zeitlichen Variationen direkt, andererseit liefert sie die Grundlage für die konsistente Betrachtung aller Einflüsse in einem einheitlichen geometrischen und gravimetrischen Bezug. Das Projekt des Global Geodetic Observing System (GGOS) der Internationalen Assoziation für Geodäsie (IAG) soll die Voraussetzungen zur Vereinigung der verschiedenen geodätischen Beobachtungsverfahren, Modelle und Auswertemethoden mit dem Ziel schaffen, mit einem konsistenten Satz geodätischer Parameter ein hochgenaues Monitoring des Systems Erde zu ermöglichen. Die Realisierung geodätischer Bezugssysteme mit höchsten Genauigkeitsansprüchen ist in diesem Kontext eine zentrale Aufgabe des GGOS und Thema der vorliegenden Arbeit. In der derzeit üblichen Darstellung umfasst eine Realisierung des Terrestrischen Referenzsystems (TRS) Stationspositionen zu einer spezifischen Epoche und ihre linearen Änderungen mit der Zeit. In diesem Konzept führen alle nichtlinearen Stationsbewegungen zu residualen Abweichungen, die geowissenschaftlich interpretiert werden können. Der natürliche Ursprung eines globalen TRS, so auch des International Terrestrial Reference System (ITRS), liegt im Massezentrum des Systems Erde (CM). Mit Hilfe dynamischer Satellitenverfahren, wie GPS, lässt sich dieser Ursprung aus geodätischen Beobachtungen realisieren. In einem konsistenten Ausgleichungsansatz werden Satellitenbahnen, Stationspositionen und die in Kugelflächenfunktionen niedrigen Grades modellierte Auflastdeformation gemeinsam geschätzt. Die Grundlage der Realisierung des ITRS bilden in einem gemeinsamen Projekt der TU Dresden, der TU München und des GFZ Potsdam reprozessierte Beobachtungen eines über 200 Stationen umfassenden globalen GPS-Netzes des Beobachtungszeitraums 1994 bis 2007. Nach der Vorstellung der Grundprinzipien des GPS und seiner wesentlichen Fehlereinflüsse erfolgt die Beschreibung der Analyse der Beobachtungsdaten selbst. Sie umfasst die einheitliche Auswertung über den gesamten Zeitraum sowie Verbesserungen in der Modellierung der atmosphärischen Einflüsse und der Charakteristika der Sende- und Empfangsantennen sowie die Nutzung der Normalgleichungen zu Realisierung des ITRS. Der abgeleitete Terrestrische Referenzrahmen (TRF) wird Potsdam-Dresden-Reprocessing 2007 (PDR07) genannt. Zur Beurteilung der Genauigkeit und Zuverlässigkeit dieses TRF werden umfangreiche Analysen durchgeführt. So wird der PDR07 u.a. mit weiteren Realisierungen des ITRS, dem ITRF2000, dem ITRF2005 und den Realisierungen des International GNSS Service (IGS) IGb00 und IGS05, verglichen. Für eine Vielzahl geodynamischer Anwendungen werden GPS-Stationen in Messkampagnen beobachtet. Die hochgenaue Realisierung des ITRS in diesen regionalen GPS-Netzen ist für die geodynamische Interpretation der Ergebnisse zwingend erforderlich. Am Beispiel eines regionalen GPS-Netzes in der Antarktis wird untersucht, wie sich das ITRS in derartigen Netzen realisieren lässt und mit welcher Genauigkeit lineare Stationsbewegungen aus Kampagnenmessungen abgeleitet werden können. Im Anschluss werden die erhaltenen Bewegungsraten geodynamisch interpretiert: Aus den horizontalen Bewegungsraten wird die Bewegung der Antarktischen Kontinentalplatte im Konzept der Globaltektonik bestimmt und ihre innere Stabilität bewertet. Die vertikalen Stationsbewegungen werden genutzt, um Aussagen über rezente Krustendeformationen aufgrund glazialisostatischer Ausgleichsbewegungen und rezenter Massenvariationen des antarktischen Eises zu treffen. / The geodetic observation techniques contribute in several ways to the research of the system Earth: On the one hand they observe the recent processes and their variations in time directly, on the other hand they provide the basis for a consistent description of all effects in a consistent geometrical and gravimetrical reference. Within the project Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) the prerequisites for the combination of geodetic observation techniques, models and analysis strategies shall be created in order to enable a high accurate monitoring of the system Earth with consistent geodetic parameters. In this context the realization of geodetic reference systems with highest accuracy is a central task of the GGOS and subject of this thesis. At present, a common realization of the Terrestrial Reference System (TRS) consists of station positions according to a specific epoch and their linear changes with time. In this concept non-linear station motions yield to residual variations, which may be used for geoscientific interpretations. The natural origin of a global TRS, and this is also the case for the International Terrestrial Reference System (ITRS), is the center of mass of the system Earth (CM). This origin can be realized by observations of dynamic satellite techniques, such as GPS. In a consistent approach satellite orbits, stations positions and the lower degrees of harmonic surface mass load coefficients are estimated simultaneously. The ITRS is realized based on reprocessed observations of a global GPS network. In a joint effort TU Dresden, TU München and GFZ Potsdam analyzed the data of more than 200 stations of the observation time span 1994 to 2007. After an introduction to the basic principles of GPS and its major error sources the data analysis is described. This covers a homogeneous analysis over the entire period, improvements in atmosphere modeling and antenna phase center modeling as well as the usage of normal equations for the ITRS realization. The determined Terrestrial Reference Frame (TRF) is named Potsdam-Dresden-Reprocessing 2007 (PDR07). In order to assess the accuracy and stability of this TRF a variety of analyses is performed. For example, PDR07 is compared to other ITRS realizations, such as the ITRF2000, the ITRF2005 as well as the realizations of the International GNSS Service (IGS) IGb00 and IGS05. GPS campaign observations are often used to investigate geodynamic phenomena. The realization of the ITRS with highest accuracy in these regional GPS networks is essential for the geodynamic interpretation of the results. A regional GPS network in Antarctica is used to investigate the optimal way to realize the ITRS in such networks and the accuracy of linear station rates determined from campaign observations. Subsequently, the station rates are used for geodynamic interpretations: The horizontal station rates are used to determine the movement of the Antarctic Plate in the concept of global plate kinematics and to assess the inner stability of the Antarctic Plate. The vertical station rates are used to evaluate recent crustal deformations caused by glacial isostatic adjustment and recent mass changes of the Antarctic ice sheet.
390

Kartographische Augmented Reality Anwendungen für mobile Geräte am Beispiel eines Campusführers der TU Dresden

Viehweger, Meike 01 April 2011 (has links)
Die rasante Weiterentwicklung der Technik eröffnet vielen Lebens- und Wirtschaftsbereichen völlig neue Möglichkeiten. So ist die stetige Verbesserung von mobilen Geräten auch ein Gewinn für die Kartographie. Im Bereich der erweiterten Realität sind dazu schon einige Anwendungen entwickelt worden. Diese Arbeit stellt verschiedene Augmented Reality Anwendungen vor, nicht nur aus dem Gebiet der Kartographie, sondern aus allen Lebensbereichen. Ein besonderes Augenmerk soll dabei auf der Anwendung mit mobilen Endgeräten liegen. Entstanden ist aus dieser Arbeit ein Campusführer, der nur die Namen der Gebäude anzeigt, welche der Nutzer von seiner Position aus auch tatsächlich sehen kann. Hierfür werden in der Arbeit Sichtbarkeitsanalysen im Allgemeinen und im Speziellen für GIS-Programme untersucht und vorgestellt. Auch die Beschriftung im dreidimensionalen Raum und auf dem Bildschirm von mobilen Geräten wird überblickshaft dargestellt. Abschließend wird der Campusführer getestet und bewertet sowie ein Fazit zum Thema Augmented Reality auf mobilen Endgeräten gegeben.:Abbildungsverzeichnis iii Tabellenverzeichnis vii Abkürzungsverzeichnis ix 1 Einleitung 1 2 Die erweiterte virtuelle Realität - Augmented Reality 3 2.1 Definition der Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Das Augmented Reality System . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Augmented Reality mit mobilen Geräten . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Mobile Geräte und Dienste . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Mobile Anwendungen mit Augmented Reality . . . . . . . . . . . . . . . . 13 2.3 Augmented Reality in der Kartographie . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Bewertung der vorgestellten Augmented Reality Anwendungen . . . . . . . . . . . . 20 3 Sichtbarkeitsanalyse 23 3.1 Vorbetrachtungen zu ortsbasierten Sichtbarkeitsanalysen auf mobilen Endgeräten . . 23 3.1.1 Ortsbasierte Dienste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Positionsbestimmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 GIS-basierte Sichtbarkeitsanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Anfälligkeit von Viewsheds auf Höhenunsicherheiten im DGM . . . . . . . 29 3.2.2 Unterschiedliche Implementierung der Algorithmen . . . . . . . . . . . . . 30 3.2.3 Erweiterung von Sichtbarkeitsanalysen . . . . . . . . . . . . . . . . . . . . 33 3.3 Sichtbarkeitsanalysen mit der Software ArcGIS . . . . . . . . . . . . . . . . . . . . 35 3.4 Grafische Darstellung der Sichtbarkeiten auf mobilen Geräten . . . . . . . . . . . . 38 3.4.1 Der Z-Buffer-Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 Das Raytracing Verfahren (Strahl-Verfolgung) . . . . . . . . . . . . . . . . 40 3.4.3 Verschiedene Culling-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Beschriftung im dreidimensionalen Raum 41 4.1 Beschriftungsplatzierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Schriftformen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Schriftart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Schriftfarbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Schriftgrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Erstellung eines Campusführers 49 5.1 Genauigkeit der Positionsbestimmung . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Arbeitsschritte zur Erstellung der Sichtbarkeitsanalyse . . . . . . . . . . . . . . . . 52 5.3 Arbeitsschritte in der Geodatenbank PostGIS . . . . . . . . . . . . . . . . . . . . . 56 5.4 Die Plattform Layar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Die Programmierung mit Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.6 Probleme bei der Erstellung des Campusführers . . . . . . . . . . . . . . . . . . . . 63 5.7 Der Campusführer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.8 Bewertung der Anwendung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 Fazit und Zusammenfassung 75 Literaturverzeichnis 77 A Workflow 85 B Quellcode 87 B.1 PointsOfInterest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 B.2 IfKLayarQueryBuilder.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 B.3 pom.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 / Undreamed-of possibilities in many areas of life and also in different economic sectors emerge owing to the rapid enhancement of technology. The constant advancement of mobile devices is also a gain for cartography. In this field some augmented reality applications have already been developed. In this thesis some augmented reality applications, not only with cartographic references, are introduced. Special attention is paid to their use on mobile devices. Furthermore a campus-guide is developed, which only displays the points of interest actually seen from the user's position. For this purpose the concept of viewsheds is introduced and examined both in general terms and especially in the use of GIS-programs. The labeling in a three-dimensional scene and on the screen of mobile devices is shortly discussed as well. Moving on, the campus-guide is tested and evaluated. Also a conclusion on the topic of augmented reality with mobile devices is given.:Abbildungsverzeichnis iii Tabellenverzeichnis vii Abkürzungsverzeichnis ix 1 Einleitung 1 2 Die erweiterte virtuelle Realität - Augmented Reality 3 2.1 Definition der Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Das Augmented Reality System . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Augmented Reality mit mobilen Geräten . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Mobile Geräte und Dienste . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Mobile Anwendungen mit Augmented Reality . . . . . . . . . . . . . . . . 13 2.3 Augmented Reality in der Kartographie . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Bewertung der vorgestellten Augmented Reality Anwendungen . . . . . . . . . . . . 20 3 Sichtbarkeitsanalyse 23 3.1 Vorbetrachtungen zu ortsbasierten Sichtbarkeitsanalysen auf mobilen Endgeräten . . 23 3.1.1 Ortsbasierte Dienste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Positionsbestimmung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 GIS-basierte Sichtbarkeitsanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Anfälligkeit von Viewsheds auf Höhenunsicherheiten im DGM . . . . . . . 29 3.2.2 Unterschiedliche Implementierung der Algorithmen . . . . . . . . . . . . . 30 3.2.3 Erweiterung von Sichtbarkeitsanalysen . . . . . . . . . . . . . . . . . . . . 33 3.3 Sichtbarkeitsanalysen mit der Software ArcGIS . . . . . . . . . . . . . . . . . . . . 35 3.4 Grafische Darstellung der Sichtbarkeiten auf mobilen Geräten . . . . . . . . . . . . 38 3.4.1 Der Z-Buffer-Algorithmus . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 Das Raytracing Verfahren (Strahl-Verfolgung) . . . . . . . . . . . . . . . . 40 3.4.3 Verschiedene Culling-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Beschriftung im dreidimensionalen Raum 41 4.1 Beschriftungsplatzierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Schriftformen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 Schriftart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Schriftfarbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Schriftgrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Erstellung eines Campusführers 49 5.1 Genauigkeit der Positionsbestimmung . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Arbeitsschritte zur Erstellung der Sichtbarkeitsanalyse . . . . . . . . . . . . . . . . 52 5.3 Arbeitsschritte in der Geodatenbank PostGIS . . . . . . . . . . . . . . . . . . . . . 56 5.4 Die Plattform Layar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Die Programmierung mit Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.6 Probleme bei der Erstellung des Campusführers . . . . . . . . . . . . . . . . . . . . 63 5.7 Der Campusführer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.8 Bewertung der Anwendung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 Fazit und Zusammenfassung 75 Literaturverzeichnis 77 A Workflow 85 B Quellcode 87 B.1 PointsOfInterest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 B.2 IfKLayarQueryBuilder.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 B.3 pom.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Page generated in 0.0204 seconds