• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 247
  • 115
  • 45
  • Tagged with
  • 402
  • 402
  • 317
  • 315
  • 315
  • 63
  • 58
  • 37
  • 32
  • 30
  • 30
  • 27
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Bestärkendes Lernen zur Steuerung und Regelung nichtlinearer dynamischer Systeme

Pritzkoleit, Max 21 January 2020 (has links)
In der vorliegenden Arbeit wird das bestärkende Lernen im Kontext der Steuerung und Regelung nichtlinearer dynamischer Systeme untersucht. Es werden zunächst die Grundlagen der stochastischen Optimalsteuerung sowie des maschinellen Lernens, die für die Betrachtungen dieser Arbeit relevant sind, erläutert. Anschließend werden die Methoden des bestärkenden Lernens im Kontext der datenbasierten Steuerung und Regelung dargelegt, um anschließend auf drei Methoden des tiefen bestärkenden Lernens näher einzugehen. Der Algorithmus Deep-Deterministic-Policy-Gradient (DDPG) wird zum Gegenstand intensiver Untersuchungen an verschiedenen mechanischen Beispielsystemen. Weiterhin erfolgt der Vergleich mit einem klassischen Ansatz, bei dem die zu bewältigenden Steuerungsaufgaben mit einer modellbasierten Trajektorienberechnung, die auf dem iterativen linear-quadratischen Regler (iLQR) basiert, gelöst werden. Mit dem iLQR können zwar alle Steuerungsaufgaben erfolgreich bewältigt werden, aber für neue Anfangswerte muss das Problem erneut gelöst werden. Bei DDPG hingegen wird ein Regler erlernt, der das zu steuernde dynamische System – aus nahezu beliebigen Anfangswerten – in den gewünschten Zustand überführt. Nachteilig ist jedoch, dass der Algorithmus sich auf hochgradig nichtlineare Systeme bisher nicht anwenden lässt und eine geringe Dateneffizienz aufweist. / In this thesis, the application of reinforcement learning for the control of nonlinear dynamical systems is researched. At first, the relevant principles of stochastic optimal control and machine learning are explained. Afterwards, reinforcement learning is embedded in the context of optimal control. Three methods of deep reinforcement learning are analyzed. A particular algorithm, namely Deep-Deterministic-Policy-Gradient (DDPG), is chosen for further studies on a variety of mechanical systems. Furthermore, the reinforcement learning approach is compared to a model-based trajectory optimization method, called iterative linear-quadratic regulator (iLQR). All control problems can be successfully solved with the trajectory optimization approach, but for new initial conditions, the problem has to be solved again. In contrast, with DDPG a \emph{global} feedback controller is learned, that can drive the controlled system in the desired state. Disadvantageous is the poor data efficiency and the lack of applicability to highly nonlinear systems.

Determination of key device parameters for short- and long-channel Schottky-type carbon nanotube field-effect transistors

Pacheco-Sánchez, Aníbal Uriel 06 February 2020 (has links)
The Schottky barrier, contact resistance and carrier mobility in carbon nanotube (CNT) field-effect transistors (FETs) are discussed in detail in this thesis. Novel extraction methods and definitions are proposed for these parameters. A technology comparison with other emerging transistor technologies and a performance projection study are also presented. A Schottky barrier height extraction method for CNTFETs considering one-dimensional (1D) conditions is developed. The methodology is applied to simulation and experimental data of CNTFETs feasible for manufacturing. Y-function-based methods (YFMs) have been applied to simulation and experimental data in order to extract a contact resistance for CNTFETs. Both extraction methods are more efficient and accurate than other conventional approaches. Practical mobility expressions are derived for CNTFETs covering the ballistic as well as the non-ballistic transport regime which enable a straightforward evaluation of the transport in CNTs. They have been applied to simulation and experimental data of devices with different channel lengths and Schottky barrier heights. A comparison of fabricated emerging transistors based on similar criteria for various application scenarios reveals CNTFETs as promising candidates to compete with Si-based technologies in low-power static and dynamic applications. A performance projection study is suggested for specific applications in terms of the studied design parameters.

Spectrally and Energy Efficient Radio Resource Management for Multi-Operator Shared Networks

Aydin, Osman 22 April 2020 (has links)
Commercial mobile communication systems are mainly based on licensed frequency spectrum, and the license is very expensive as the spectrum is a sparse wireless resource. Therefore, sharing this wireless resource is an essential requirement not only at the present but also in the future considering trends like connectivity for everybody and everything. In this thesis, we study the sharing of wireless resources with different approaches for realizing fair, efficient, and predictable sharing solutions in a controlled manner. The efficient use of wireless channel resources is an important target to reduce the costs of network operation and deployment. To achieve this, we need practical scheduling algorithms for wireless resources, out of which several of them will be presented and analyzed in this work. Different optimization frameworks for the spectral efficiency utility are presented, with an individual focus on guaranteeing resource or rate fairness among the operators in a network with shared radio resources. Thus, the presented proposals will help the mobile network operators to overcome the issues of losing network control and traceability of used wireless resources in a shared environment. Besides this, emerging vertical industries, such as automotive, healthcare, industry 4.0, internet of things (IoT) industries will put a certain burden on the wireless networks asking for guaranteed service level requirement from the mobile network operators. In this regard, this thesis provides the necessary methods addressing these challenges with the help of scheduling methods which are based on the joint optimization of spectral and energy efficiency. Thus, wireless networks will be enabled as a service function in a controlled and scalable way for new emerging markets. Furthermore, the presented solutions t well with the requirements of fifth generation (5G) network slicing.

Queueing-Theoretic End-to-End Latency Modeling of Future Wireless Networks

Schulz, Philipp 11 March 2020 (has links)
The fifth generation (5G) of mobile communication networks is envisioned to enable a variety of novel applications. These applications demand requirements from the network, which are diverse and challenging. Consequently, the mobile network has to be not only capable to meet the demands of one of these applications, but also be flexible enough that it can be tailored to different needs of various services. Among these new applications, there are use cases that require low latency as well as an ultra-high reliability, e.g., to ensure unobstructed production in factory automation or road safety for (autonomous) transportation. In these domains, the requirements are crucial, since violating them may lead to financial or even human damage. Hence, an ultra-low probability of failure is necessary. Based on this, two major questions arise that are the motivation for this thesis. First, how can ultra-low failure probabilities be evaluated, since experiments or simulations would require a tremendous number of runs and, thus, turn out to be infeasible. Second, given a network that can be configured differently for different applications through the concept of network slicing, which performance can be expected by different parameters and what is their optimal choice, particularly in the presence of other applications. In this thesis, both questions shall be answered by appropriate mathematical modeling of the radio interface and the radio access network. Thereby the aim is to find the distribution of the (end-to-end) latency, allowing to extract stochastic measures such as the mean, the variance, but also ultra-high percentiles at the distribution tail. The percentile analysis eventually leads to the desired evaluation of worst-case scenarios at ultra-low probabilities. Therefore, the mathematical tool of queuing theory is utilized to study video streaming performance and one or multiple (low-latency) applications. One of the key contributions is the development of a numeric algorithm to obtain the latency of general queuing systems for homogeneous as well as for prioritized heterogeneous traffic. This provides the foundation for analyzing and improving end-to-end latency for applications with known traffic distributions in arbitrary network topologies and consisting of one or multiple network slices. / Es wird erwartet, dass die fünfte Mobilfunkgeneration (5G) eine Reihe neuartiger Anwendungen ermöglichen wird. Allerdings stellen diese Anwendungen sowohl sehr unterschiedliche als auch überaus herausfordernde Anforderungen an das Netzwerk. Folglich muss das mobile Netz nicht nur die Voraussetzungen einer einzelnen Anwendungen erfüllen, sondern auch flexibel genug sein, um an die Vorgaben unterschiedlicher Dienste angepasst werden zu können. Ein Teil der neuen Anwendungen erfordert hochzuverlässige Kommunikation mit niedriger Latenz, um beispielsweise unterbrechungsfreie Produktion in der Fabrikautomatisierung oder Sicherheit im (autonomen) Straßenverkehr zu gewährleisten. In diesen Bereichen ist die Erfüllung der gestellten Anforderungen besonders kritisch, da eine Verletzung finanzielle oder sogar personelle Schäden nach sich ziehen könnte. Eine extrem niedrige Ausfallwahrscheinlichkeit ist daher von größter Wichtigkeit. Daraus ergeben sich zwei wesentliche Fragestellungen, welche diese Arbeit motivieren. Erstens, wie können extrem niedrige Ausfallwahrscheinlichkeiten evaluiert werden. Ihr Nachweis durch Experimente oder Simulationen würde eine extrem große Anzahl an Durchläufen benötigen und sich daher als nicht realisierbar herausstellen. Zweitens, welche Performanz ist für ein gegebenes Netzwerk durch unterschiedliche Konfigurationen zu erwarten und wie kann die optimale Konfiguration gewählt werden. Diese Frage ist insbesondere dann interessant, wenn mehrere Anwendungen gleichzeitig bedient werden und durch sogenanntes Slicing für jeden Dienst unterschiedliche Konfigurationen möglich sind. In dieser Arbeit werden beide Fragen durch geeignete mathematische Modellierung der Funkschnittstelle sowie des Funkzugangsnetzes (Radio Access Network) adressiert. Mithilfe der Warteschlangentheorie soll die stochastische Verteilung der (Ende-zu-Ende-) Latenz bestimmt werden. Dies liefert unterschiedliche stochastische Metriken, wie den Erwartungswert, die Varianz und insbesondere extrem hohe Perzentile am oberen Rand der Verteilung. Letztere geben schließlich Aufschluss über die gesuchten schlimmsten Fälle, die mit sehr geringer Wahrscheinlichkeit eintreten können. In der Arbeit werden Videostreaming und ein oder mehrere niedriglatente Anwendungen untersucht. Zu den wichtigsten Beiträgen zählt dabei die Entwicklung einer numerischen Methode, um die Latenz in allgemeinen Warteschlangensystemen für homogenen sowie für priorisierten heterogenen Datenverkehr zu bestimmen. Dies legt die Grundlage für die Analyse und Verbesserung von Ende-zu-Ende-Latenz für Anwendungen mit bekannten Verkehrsverteilungen in beliebigen Netzwerktopologien mit ein oder mehreren Slices.

Energy Efficient, Cooperative Communication in Low-Power Wireless Networks

Abdelkader, Abdelrahman 10 June 2020 (has links)
The increased interest in massive deployment of wireless sensors and network densification requires more innovation in low-latency communication across multi-hop networks. Moreover, the resource constrained nature of sensor nodes calls for more energy efficient transmission protocols, in order to increase the battery life of said devices. Therefore, it is important to investigate possible technologies that would aid in improving energy efficiency and decreasing latency in wireless sensor networks (WSN) while focusing on application specific requirements. To this end, and based on state of the art Glossy, a low-power WSN flooding protocol, this dissertation introduces two energy efficient, cooperative transmission schemes for low-power communication in WSNs, with the aim of achieving performance gains in energy efficiency, latency and power consumption. These approaches apply several cooperative transmission technologies such as physical layer network coding and transmit beamforming. Moreover, mathematical tools such as convex optimization and game theory are used in order to analytically construct the proposed schemes. Then, system level simulations are performed, where the proposed schemes are evaluated based on different criteria. First, in order to improve over all latency in the network as well as energy efficiency, MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding of different packets from multiple sources to all nodes in the network. Using a communication-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are determined. Further, simulation results show that MF-Glossy has the potential to achieve several-fold improvements in goodput and latency across a wide spectrum of network configurations at lower energy costs and comparable packet reception rates. Hardware implementation challenges are discussed as a step towards harnessing the potential of MF-Glossy in real networks, while focusing on key challenges and possible solutions. Second, under the assumption of available channel state information (CSI) at all nodes, centralized and distributed beamforming and power control algorithms are proposed and their performance is evaluated. They are compared in terms of energy efficiency to standard Glossy. Numerical simulations demonstrate that a centralized power control scheme can achieve several-fold improvements in energy efficiency over Glossy across a wide spectrum of network configurations at comparable packet reception rates. Furthermore, the more realistic scenario where CSI is not available at transmitting nodes is considered. To battle CSI unavailability, cooperation is introduced on two stages. First, cooperation between receiving and transmitting nodes is proposed for the process of CSI acquisition, where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then, cooperation within transmitting nodes is proposed for the process of multi-cast transmit beamforming. In addition to an analytical formulation of the robust multi-cast beamforming problem with imperfect CSI, its performance is evaluated, in terms of energy efficiency, through numerical simulations. It is shown that the level of cooperation, represented by the number of limited feedback bits from receivers to transmitters, greatly impacts energy efficiency. To this end, the optimization problem of finding the optimal number of feedback bits B is formulated, as a programming problem, under QoS constraints of 5% maximum outage. Numerical simulations show that there exists an optimal number of feedback bits that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters on energy efficiency is studied, where it is shown that an optimum group of cooperating transmit nodes, also known as a transmit coalition, can be formed in order to maximize energy efficiency. The investigated techniques including optimum feedback bits and transmit coalition formation can achieve a 100% increase in energy efficiency when compared to state of the art Glossy under same operation requirements in very dense networks. In summary, the two main contributions in this dissertation provide insights on the possible performance gains that can be achieved when cooperative technologies are used in low-power wireless networks.

Millimeter-Wave Hybrid Beamforming Based on Implicit Channel State Information

Chiang, Hsiao-Lan 19 January 2019 (has links)
Millimeter wave (mmWave) spectrum above 30 GHz offers us an opportunity to pursue high-data-rate transmission using a channel bandwidth up to several gigahertz. To provide reliable link quality in mmWave frequency bands, hybrid analog-digital beamforming plays a crucial role in overcoming severe path loss and, meanwhile, satisfies the demand for low-power-consumption radio frequency (RF) devices. Implementing hybrid beamforming based on available channel state information (CSI) is a common solution in the hybrid beamforming literature. However, many reference methods underestimate the computational complexity of channel estimation for large antenna arrays or subsequent steps, such as the singular value decomposition of a channel matrix. To this end, we present a low-complexity scheme that exploits implicit channel knowledge to facilitate the design of hybrid beamforming for frequency-selective fading channels. We start from the study of channel estimation using the orthogonal matching pursuit (OMP) algorithm and realize that the problems of channel estimation and analog beam selection are equivalent if the candidates for analog beamforming vectors in the codebooks are mutually orthogonal. This implies that when orthogonal codebooks are employed, the observations used in channel estimation for large antenna arrays can be used to implement hybrid beamforming directly. The above-mentioned observations can be regarded as \textbf{implicit CSI}; they are coupling coefficients of all possible pairs of analog beamforming vectors on both sides of the channel. The idea of using implicit CSI to implement hybrid beamforming is further extended to the cases of non-orthogonal codebooks. Instead of calculating the mutual information between the transmitter and receiver, we focus on small-size coupling matrices between beam patterns selected by using appropriate key parameters as performance indicators. Therefore, the proposed hybrid beamforming method becomes much simpler: it amounts to collecting different sets of large-power coupling coefficients to construct multiple alternatives to an effective channel matrix. Then, the set yielding the largest Frobenius norm (or the largest absolute value of the determinant) of the effective channel provides the solution to the hybrid beamforming problem. The proposed hybrid beamforming approach clearly shows that the performance of hybrid beamforming is dominated by the quality of the coupling coefficients. Considering a fixed-length training sequence, we exploit mmWave channels' sparsity shown in the delay and angular domains to refine the quality of the coupling coefficients as well as to improve the hybrid beamforming performance.

Advanced Channel Estimation Techniques for Multiple-Input Multiple-Output Multi-Carrier Systems in Doubly-Dispersive Channels

Ehsan Far, Shahab 04 March 2020 (has links)
Flexible numerology of the physical layer has been introduced in the latest release of 5G new radio (NR) and the baseline waveform generation is chosen to be cyclic-prefix based orthogonal frequency division multiplexing (CP-OFDM). Thanks to the narrow subcarrier spacing and low complexity one tap equalization (EQ) of OFDM, it suits well to time-dispersive channels. For the upcoming 5G and beyond use-case scenarios, it is foreseen that the users might experience high mobility conditions. While the frame structure of the 5G NR is designed for long coherence times, the synchronization and channel estimation (CE) procedures are not fully and reliably covered for diverse applications. The research on alternative multi-carrier waveforms has brought up valuable results in terms of spectral efficiency, applications coexistence and flexibility. Nevertheless, the receiver design becomes more challenging for multiple-input multiple-output (MIMO) non-orthogonal multi-carriers because the receiver must deal with multiple dimensions of interference. This thesis aims to deliver accurate pilot-aided estimations of the wireless channel for coherent detection. Considering a MIMO non-orthogonal multi-carrier, e.g. generalized frequency division multiplexing (GFDM), we initially derive the classical and Bayesian estimators for rich multi-path fading channels, where we theoretically assess the choice of pilot design. Moreover, the well time- and frequency-localization of the pilots in non-orthogonal multi-carriers allows to reuse their energy from cyclic-prefix (CP). Taking advantage of this feature, we derive an iterative approach for joint CE and EQ of MIMO systems. Furthermore, exploiting the block-circularity of GFDM, we comprehensively analyze the complexity aspects, and propose a solution for low complexity implementation. Assuming very high mobility use-cases where the channel varies within the symbol duration, further considerations, particularly the channel coherence time must be taken into account. A promising candidate that is fully independent of the multi-carrier choice is unique word (UW) transmission, where the CP of random nature is replaced by a deterministic sequence. This feature, allows per-block synchronization and channel estimation for robust transmission over extremely doubly-dispersive channels. In this thesis, we propose a novel approach to extend the UW-based physical layer design to MIMO systems and we provide an in-depth study of their out-of-band emission, synchronization, CE and EQ procedures. Via theoretical derivations and simulation results, and comparisons with respect to the state-of-the-art CP-OFDM systems, we show that the proposed UW-based frame design facilitates robust transmission over extremely doubly-dispersive channels.:1 Introduction 1 1.1 Multi-Carrier Waveforms 1 1.2 MIMO Systems 3 1.3 Contributions and Thesis Structure 4 1.4 Notations 6 2 State-of-the-art and Fundamentals 9 2.1 Linear Systems and Problem Statement 9 2.2 GFDM Modulation 11 2.3 MIMO Wireless Channel 12 2.4 Classical and Bayesian Channel Estimation in MIMO OFDM Systems 15 2.5 UW-Based Transmission in SISO Systems 17 2.6 Summary 19 3 Channel Estimation for MIMO Non-Orthogonal Waveforms 21 3.1 Classical and Bayesian Channel Estimation in MIMO GFDM Systems 22 3.1.1 MIMO LS Channel Estimation 23 3.1.2 MIMO LMMSE Channel Estimation 24 3.1.3 Simulation Results 25 3.2 Basic Pilot Designs for GFDM Channel Estimation 29 3.2.1 LS/HM Channel Estimation 31 3.2.2 LMMSE Channel Estimation for GFDM 32 3.2.3 Error Characterization 33 3.2.4 Simulation Results 36 3.3 Interference-Free Pilot Insertion for MIMO GFDM Channel Estimation 39 3.3.1 Interference-Free Pilot Insertion 39 3.3.2 Pilot Observation 40 3.3.3 Complexity 41 3.3.4 Simulation Results 41 3.4 Bayesian Pilot- and CP-aided Channel Estimation in MIMO NonOrthogonal Multi-Carriers 45 3.4.1 Review on System Model 46 3.4.2 Single-Input-Single-Output Systems 47 3.4.3 Extension to MIMO 50 3.4.4 Application to GFDM 51 3.4.5 Joint Channel Estimation and Equalization via LMMSE Parallel Interference Cancellation 57 3.4.6 Complexity Analysis 61 3.4.7 Simulation Results 61 3.5 Pilot- and CP-aided Channel Estimation in Time-Varying Scenarios 67 3.5.1 Adaptive Filtering based on Wiener-Hopf Approac 68 3.5.2 Simulation Results 69 3.6 Summary 72 4 Design of UW-Based Transmission for MIMO Multi-Carriers 73 4.1 Frame Design, Efficiency and Overhead Analysis 74 4.1.1 Illustrative Scenario 74 4.1.2 CP vs. UW Efficiency Analysis 76 4.1.3 Numerical Results 77 4.2 Sequences for UW and OOB Radiation 78 4.2.1 Orthogonal Polyphase Sequences 79 4.2.2 Waveform Engineering for UW Sequences combined with GFDM 79 4.2.3 Simulation Results for OOB Emission of UW-GFDM 81 4.3 Synchronization 82 4.3.1 Transmission over a Centralized MIMO Wireless Channel 82 4.3.2 Coarse Time Acquisition 83 4.3.3 CFO Estimation and Removal 85 4.3.4 Fine Time Acquisition 86 4.3.5 Simulation Results 88 4.4 Channel Estimation 92 4.4.1 MIMO UW-based LMMSE CE 92 4.4.2 Adaptive Filtering 93 4.4.3 Circular UW Transmission 94 4.4.4 Simulation Results 95 4.5 Equalization with Imperfect Channel Knowledge 96 4.5.1 UW-Free Equalization 97 4.5.2 Simulation Results 99 4.6 Summary 102 5 Conclusions and Perspectives 103 5.1 Main Outcomes in Short 103 5.2 Open Challenges 105 A Complementary Materials 107 A.1 Linear Algebra Identities 107 A.2 Proof of lower triangular Toeplitz channel matrix being defective 108 A.3 Calculation of noise-plus-interference covariance matrix for Pilot- and CPaided CE 108 A.4 Bock diagonalization of the effective channel for GFDM 109 A.5 Detailed complexity analysis of Sec. 3.4 109 A.6 CRLB derivations for the pdf (4.24) 113 A.7 Proof that (4.45) emulates a circular CIR at the receiver 114

Untersuchung parasitärer Effekte der Strommessung bei der Bestimmung magnetischer Eigenschaften von Materialproben

Trnka, Nikolaus 25 April 2018 (has links)
Dieser Vortrag beschäftigt sich mit der Untersuchung parasitärer Effekte der Strommessung über Messwiderstände und dem Einfluss der entstehenden Fehler auf die Ergebnisse eines Versuchsstandes zur Bestimmung der magnetischen Eigenschaften von Materialproben. Es folgt die Entwicklung und Validierung einer Kompensation im Frequenzbereich. Errata: Formel auf Folie 17: |G(f)|*exp(j*phi(f))

Epochenvergleiche von Präzisions-EDM-Messungen zur Untersuchung der Punktstabilität auf einer EDM-Basislinie

Lehmann, Rüdiger, Attrodt, Antje January 2016 (has links)
Auf der von der Hochschule für Technik und Wirtschaft Dresden betriebene EDM-Basislinie im Großen Garten in Dresden werden regelmäßig die Sollstrecken überprüft. Die Ergebnisse deuten auf Punktbewegungen hin. Durch Vergleiche zweier Epochen wird versucht, solche Punktbewegungen statistisch nachzuweisen, sowohl mittels statistischer Hypothesentests, als auch mit einem Informationskriterium. Punktbewegungen von bis zu 0,25 mm/a wurden geschätzt. Über die Ursachen wird noch spekuliert.

Eyelet particle tracing - steady visualization of unsteady flow

Wiebel, Alexander, Scheuermann, Gerik 18 October 2018 (has links)
It is a challenging task to visualize the behavior of time-dependent 3D vector fields. Most of the time an overview of unsteady fields is provided via animations, but, unfortunately, animations provide only transient impressions of momentary flow. In this paper we present two approaches to visualize time varying fields with fixed geometry. Path lines and streak lines represent such a steady visualization of unsteady vector fields, but because of occlusion and visual clutter it is useless to draw them all over the spatial domain. A selection is needed. We show how bundles of streak lines and path lines, running at different times through one point in space, like through an eyelet, yield an insightful visualization of flow structure ('eyelet lines'). To provide a more intuitive and appealing visualization we also explain how to construct a surface from these lines. As second approach, we use a simple measurement of local changes of a field over time to determine regions with strong changes. We visualize these regions with isosurfaces to give an overview of the activity in the dataset. Finally we use the regions as a guide for placing eyelets.

Page generated in 0.0233 seconds