• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 130
  • 45
  • Tagged with
  • 436
  • 436
  • 351
  • 349
  • 349
  • 72
  • 63
  • 37
  • 33
  • 31
  • 31
  • 30
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Nanoscale Material Characterization of Silicon Nanowires for Application in Reconfigurable Nanowire Transistors

Bukovsky, Sayanti 26 July 2021 (has links)
Silicon Nanowire based Reconfigurable Field Effect Transistor (SiNW RFET) presents a solution to increase the system functionality beyond the limits of classical CMOS scaling in More-than-Moore era of semiconductor technology. They are not only spatially reconfigurable, i.e., the source and the drain can be interchangeable in design, but in such devices one can also control the primary charge carrier by controlling the voltage in the control gate. The two key morphological factors controlling reconfigurability are the structure and composition of the Schottky junctions, which serve as the location for Program and Control gates and radial strain induced by the self-limiting oxidation, which influences the carrier mobility resulting in symmetric p and n characteristic curves of an RFET. Despite its potential, in-depth nanoscale studies on the structural and compositional characterization of the key features controlling the reconfigurability are limited and thereby presents as a novel area of research. In this study, the composition and morphology of the Schottky junction and the radial strain profile due to self-limiting oxidation were studied using advanced imaging and sample preparation techniques like Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) imaging alongside with precise sample preparation methods like Focused Ion Beam (FIB) liftout techniques. For analysis of radial strain in nanowires that underwent self-limiting oxidation, a TEM lamella was taken of a cross-section of the NW. The lamella was kept at 200 nm thickness to preserve the strain state of the nanowire cross-section. It was observed that nanowires undergoing such oxidation have an omega (Ω) shaped oxide shell where the shell was discontinued at the spot where the nanowire was touching the substrate. Fast Fourier transform of the high-resolution image of such a NW crossection was used to calculate the strain profile. The strain is also found to be not radially uniform for such Ω shaped oxide shells. The strain profile shows a local maxima near the nanowire base where it touches the substrate then a minima approximately at the geometric center followed by the maximum strain at the area adjacent to the oxide shell thereby showing a sinusoidal profile. Theoretical simulations performed by Dr. Tim Baldauf further verified the nature of the sinusoidal strain that was observed experimentally. Similar simulations were done for different omega shell shapes, which yielded strain plots of similar sinusoidal strain plots, with the local maxima depending on the level of encapsulation of the NW by the shell. In the characterization of the Schottky junction, a TEM lamella was taken along the longitudinal direction of a nanowire, which was silicidized from both ends, similar to ones used in SiNW RFET devices. High resolution TEM micrographs and EDX (Energy dispersive X-Ray Spectroscopy) in the TEM along the Schottky junction showed a Ni rich phase and pure Si on either side of the junction. This participating phase was identified as NiSi2. However, the transition between the phases shows a gradient and in-situ experiments were designed to verify the sharpness of the junction. In in-situ silicidation experiments, Si nanowires with a thin native oxide shell were distributed on an electron transparent surface and were partially covered with Ni islands by shadow sputtering. The whole setup was then heated in a heating stage of a TEM and the Ni was allowed to disperse within the Si nanowires forming NiSi2. HRTEM (High Resolution TEM), EDX and EELS (Electron Energy Loss Spectroscopy) studies were performed on the silicidized samples for further ex-situ analysis. During the in-situ experiment, it was observed that Ni-phase interface is atomistically sharp and seldom progresses perpendicularly to the nanowire’s direction but through the closed packed planes of the NW. The interface velocity at different temperatures was used to calculate the activation energy of the silicidation process. The value of the activation energy indicates the Ni undergoing volume diffusion through the Ni-rich phase. The velocity of the interface was observed to be much higher in nanowires with smaller diameters than those with higher diameters, further proving the hypothesis. During the in-situ experiments, in around 10% of nanowires that underwent complete silicidation and held isothermally, the crystalline silicide phase was observed to partially or fully diffuse out of the nanowire core, leaving only a thin shell of Silicon oxide forming ultra-thin walled SiO2 nanotubes (NT). The onset and the time required for completion of the process varies in the nanowires depending on size of the nanowire, the distance and contact to the nearest Ni islands and presence of defects such as kinks and twists within the nanowire. In order to study the dynamics of the process, the velocity of the receding front was calculated for nanowires of two different diameters. They are found to be identical, indicating the volume flow rate of the process is directly proportional to the cross-sectional area. The voids were formed by the reduced diffusivity of Ni in Ni2Si phase in comparison to phases with lower percent of Ni. This indicates that the reason behind the phenomenon is coalition of Kirkendall voids and thus dependent on volume diffusion. From this study, it can be concluded that the extent of self-limiting oxidation and shape of the shell can influence the radial strain state. This can be used to manipulate the strain to tailor the electron and hole transfer characteristics within the RFET. A variety of factors including temperature, time, orientation and radius of the nanowires has been studied with respect to silicidation of a SiNW. The calculated activation energy can be used for precise process control over the location and morphology of Schottky junction. Although not directly related to SiNW RFET devices, the self-assembly of ultra-thin-walled SiO2 NT is a novel research area in itself, the findings of which can be applied in to design novel electronics and sensors.:TABLE OF CONTENTS Preface List of Abbreviations CHAPTER 1: Introduction and Motivation 1.1 Definition and History 1.2 Synthesis Routes 1.3 Properties and Applications 1.4 Nanoscale Electronics and Role of Si Nws 1.4.1 1.4.2 SiNW Reconfigurable Field Effect Transistor 1.5 Introduction to The Topic of The Thesis 1.6 Outline of The Thesis CHAPTER 2: Physical Basics and Previous Research: A Short Summary 2.1 Strain Measurement and Effects of Strain on on Nanoelectronics 2.1.1 Strain Analysis in Planar CMOS Structures 2.2 Silicidation and Schottky Junction 2.2.1 In-situ Silicidation 2.2.2 Silicon oxide nanotubes CHAPTER 3: Background of Instruments and Experimental Set-up 3.1 Scanning Electron Microscope 3.2 Transmission Electron Microscope 3.2.1 Imaging Techniques 3.2.2 TEM sample preparation 3.3 Focused Ion Beam CHAPTER 4: Strain in Nanowire 4.1 Goal of This Study 4.2 Strain in SiNW RFET Devices 4.3 Strain Analysis in SiNW Cross-section 4.3.1 Sample Preparation 4.3.2 Experimental Process 4.3.3 Results and Discussion 4.4 Conclusions CHAPTER 5: Schottky Junction 5.1 Crystallographic Data on Nickel Silicides 5.2 Formation of Silicides in 2-D Structures 5.2.1 Sample History 5.2.2 Sample Preparation 5.2.3 Results and Discussion 5.3 Formation of Silicides in 1-D Structures: Schottky Junction in NWs 5.3.1 Sample History 5.3.2 Sample Preparation 5.3.3 Results and Discussion 5.3.4 Shortcomings of The Lift-out Technique 5.4 In-situ Silicidation 5.4.1 Motivation 5.4.2 Sample Preparation 5.4.3 Experimental Procedure 5.4.4 Results and Discussions 5.4.5 Shortcoming of The Experiment 5.5 Self-assembling SiO2 Nanotubes 5.5.1 Sample Preparation 5.5.2 Experimental Process 5.5.3 Results and Discussion . 5.5.4 Post In-situ Experiment TEM Analysis 5.5.5 Conclusions CHAPTER 6: Conclusions and Outlook 6.1 Strain Analysis 6.2 Schottky Junction Studies Bibliography Acknowledgements
132

Agile Mobile Edge Computing and Network-coded Cooperation in 5G

Torre Arranz, Roberto 28 July 2021 (has links)
The architecture of the network is undergoing a series of structural changes from the core network to the user to pave the way for 5G. New infrastructure elements are being massively deployed, thus making 5G more heterogeneous. This emerging paradigm, along with new services and handheld devices, creates a massive, highly mobile, heterogeneous environment with hard constraints in throughput, latency, resilience, and power consumption. This dissertation presents Agile MEC (AMEC), a shift in the concept of MEC to support user's mobility with the rapid relocation of services; and Network-coded Cooperation (NCC), a new system for massive content distribution in cellular networks. In summary, AMEC provides a mobility framework that reliably reduces the latency and power consumption in the system, and NCC improves network throughput, network resilience, and power consumption by offloading cellular traffic to underlay networks. / Die Architektur des Netzes durchläuft eine Reihe von strukturellen Veränderungen vom Kernnetz bis zum Benutzer, um den Weg für 5G zu ebnen. Neue Infrastruktur Elemente werden massiv eingesetzt, wodurch 5G heterogener wird. Dieses aufkommende Paradigma bildet zusammen mit neuen Diensten und Handheld-Geräten eine massive, hochmobile, heterogene Umgebung mit harten Einschränkungen in Bezug auf Durchsatz, Latenz, Belastbarkeit und Stromverbrauch. In dieser Dissertation werden Agile MEC (AMEC), eine Verschiebung des MEC-Konzepts zur Unterstützung der Mobilität der Benutzer durch die schnelle Verlagerung von Diensten, und Network-coded Cooperation (NCC), ein neues System zur massiven Verteilung von Inhalten in zellularen Netzwerken, vorgestellt. Zusammenfassend lässt sich sagen, dass AMEC einen Mobilitätsrahmen bietet, der die Latenzzeit und den Stromverbrauch im System zuverlässig reduziert, und NCC verbessert den Netzwerkdurchsatz, die Netzwerkstabilität und den Stromverbrauch, indem es den zellularen Datenverkehr auf unterlagerte Netzwerke verlagert.
133

Adaptive optische Wellenfrontkorrektur unter Einsatz des Fresnel-Leitsterns und eines hybriden Regelkreises implementiert auf einem Field-Programmable System-on-Chip

Radner, Hannes 09 August 2021 (has links)
Laseroptische Messsysteme werden vielseitig eingesetzt, unter anderem für die Messung der Strömung in Blasen und Tropfen. Beispielsweise ist die Messung in Tropfen von besonderem Interesse für die Brennstoffzellenforschung, da das Wasserkondensat die Leistungsfähigkeit der Zelle stark mindern kann. Bei der laseroptischen Messung durch die dynamische Phasengrenzfläche erhöht sich aufgrund der zufälligen Lichtbrechung die Messunsicherheit erheblich. Um dem entgegenzuwirken, wurde in dieser Arbeit untersucht, wie sich der in der Astronomie weitverbreitete Ansatz einer aktiven Wellenfrontkorrektur auf die laseroptische Strömungsmesstechnik für die Korrektur einer zufällig dynamisch streuenden Phasengrenzfläche mit nur einem optischen Zugang durch die Grenzfläche übertragen lässt. Als neuartiger Leitstern wurde hierfür der Fresnel-Reflex der Oberfläche als Fresnel Guide Star (FGS), welcher alle Informationen über die optische Störung enthält, untersucht und eingesetzt. Validiert wurde der neue Leitstern exemplarisch für die zwei laseroptischen Messverfahren Laser-Doppler-Velocimetrie (LDV) und Particle-Image-Velocimetrie (PIV). Für das bildgebende Messverfahren PIV wurde ein Regelsystem realisiert, welches eine adaptive optische Korrektur einer oszillierenden Wasseroberfläche durchführt. Das System besteht aus einem Hartmann-Shack-Sensor (HSS), einer Signalverarbeitungseinheit und einem 69-elementigen deformierbaren Membranspiegel. Dabei muss die Signalverarbeitungseinheit aus dem Hartmannogramm die Wellenfront des FGS rekonstruieren, die Stellgröße berechnen und den Membranspiegel ansteuern. Diese komplexe Multiple-Input-Multiple-Output(MIMO)-Regelungsaufgabe stellt besondere Anforderungen an das System, da die Wasseroberfläche mit mehreren hundert Hertz schwingt und das System für eine hinreichende Reserve somit eine Regelrate im Kilohertzbereich haben muss. Um diese Anforderungen zu erfüllen, wurde als hybride Recheneinheit ein Field- Programmable System-on-Chip (FPSoC) eingesetzt. Dieser vereint eine Central Processing Unit (CPU) und einen Field-Programmable Gate Array (FPGA) auf einem einzigen monolithischen Chip als eine sehr leistungsfähige Symbiose beider Architekturen. Das System erreicht eine Regelrate von 3,5 kHz und war in der Lage, die optische Störung mit einer Dämpfungsbandbreite von bis zu 150 Hz zu dämpfen. Bei der PIV-Messung wurde die Erhöhung der Standardunsicherheit des Geschwindigkeitsfeldes, verursacht durch die Oszillation der Phasengrenzfläche, um 67 % reduziert. Das System kann beispielsweise für die Optimierung von Brennstoffzellen eingesetzt werden, um die Tropfeninnenströmung in den auf der chemisch aktiven opaken Membran kondensierten Tropfen mit nur einem einzigen optischen Zugang durch die streuende Grenzfläche zu messen. Damit könnte der Gleitprozess des Tropfens an der Membranoberfläche verstanden werden und das Wasser effektiver abtransportiert werden, um die Leistungsfähigkeit der Zelle zu steigern. Weitere Anwendungsgebiete sind die Strömungsmessung in Taylorblasen, Regentropfen oder Flüssigkeitskühlfilmen mit offener Oberfläche. Generell hat der neue FGS zusammen mit dem Regelungssystem das Potenzial, die optische Messung durch eine dynamische oszillierende Grenzfläche zu verbessern oder überhaupt erst zu ermöglichen. / Laser optical measurement systems are used in a variety of applications, e.g. the flow measurement in bubbles and droplets. The flow in droplets is of particular interest for fuel cell research, since water condensate can significantly reduce the efficiency of the cell. In laser-optical measurements the dynamic motion of the phase boundary increases the measurement uncertainty significantly because of the random refraction of light. Therefore this thesis investigates how the approach of an active wavefront correction, which is widely used in astronomy, can be applied to laser-optical flow measurement techniques for the correction of a dynamic phase boundary with only one optical access through the interface. For this purpose, the Fresnel reflection of the surface was investigated, which is called Fresnel Guide Star (FGS). It contains all information about the optical distortion. The new guide star was validated exemplarily for the two laser optical measurement techniques Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). For PIV a control system consisting of a Hartmann-Shack-Sensor (HSS), a signal processing unit and a 69-element deformable membrane mirror was realized, which performs an adaptive optical correction of the moving water surface. Therefore the signal processing unit must reconstruct the wavefront of the FGS from the Hartmannogram, calculate the set value and control the membrane mirror. This complex Multiple-Input Multiple-Output (MIMO) control task results in extensive demands on the control system, since the water surface oscillates with several hundred hertz and the system must therefore have a control rate in the kilohertz range to ensure sufficient reserve. In order to meet these requirements, a Field- Programmable System-on-Chip (FPSoC) was used as hybrid computing unit. It combines a Central Processing Unit (CPU) and an Field-Programmable Gate Array (FPGA) on a single monolithic chip as a very powerful symbiosis of both architectures. The system achieved a control rate of 3,5 kHz and was able to attenuate the optical distortion with an attenuation bandwidth of up to 150 Hz. In the PIV measurement, the increase in the standard uncertainty of the velocity field caused by the oscillation of the phase boundary was reduced by 67 %. The system could be used for the optimization of fuel cells to measure the internal flow in the droplets condensed on the chemically active membrane with only one optical access through the fluctuating interface. This would allow the sliding process of the droplet on the membrane surface to be understood and the water to be removed more effectively in order to increase the performance of the cell. Further applications are flow measurement in bubbles, raindrops or liquid cooling films with an open surface, where the system expands the field of application for computational laser metrology. In general, the new FGS together with the low latency control system have the potential to improve the optical measurement through dynamically oscillating interfaces or to make the measurement possible at all.
134

An Analogue Baseband Chain for a MagneticTunnel Junction Based RF Signal Detector

Ma, Rui, Buhr, Simon, Tibenszky, Zoltán, Kreißig, Martin, Ellinger, Frank 22 November 2021 (has links)
This work presents an analogue baseband (BB) chain for a magnetic tunneling junction (MTJ) based radiofrequency (RF) signal detector fully integrated in a hybrid CMOS-MTJ technology. The BB chain contains a 6 th -order gm-C low-pass filter (LPF), a BB amplifier, a comparator, and a current bank. According to measurement results, the 6 th -order LPF with a cut-off frequency of 10 MHz consumes a very low DC power of 2.41 mW. Its DC power consumption per pole of 0.4 mW is the lowest among the state-of-the-art LPFs. The LPF can be also switched on and off very fast within 110 ns. With the fast switch-ability and the low power consumption, the LPF outperforms the state of the art. Furthermore, the complete BB chain can transform a 2.5 Vpp, 5 Mbps BB signal into digital data with a bit error rate fewer than 1e−6 . The BB chain consumes 2.85mW including all bias circuits. To achieve power efficiency, the BB chain is designed to operate under an aggressive duty-cycling mode. The switch-on time of the BB chain is within 200 ns
135

Network Coding Strategies for Multi-Core Architectures

Wunderlich, Simon 09 November 2021 (has links)
Random Linear Network Coding (RLNC) is a new coding technique which can provide higher reliability and efficiency in wireless networks. Applying it on the fifth generation of cellular networks (5G) is now possible due to the softwarization approach of the 5G architecture. However, the complex computations necessary to encode and decode symbols in RLNC are limiting the achievable throughput and energy efficiency on todays mobile computers. Most computers, phones, TVs, or network equipment nowadays come with multiple, possibly heteregoneous (i.e. slow low-power and fast high-power) processing cores. Previous multi core research focused on RLNC optimization for big data chunks which are useful for storage, however network operations tend to use smaller packets (e.g. Ethernet MTUs of 1500 byte) and code over smaller generations of packets. Also latency is an increasingly important performance aspect in the upcoming Tactile Internet, however latency has received only small attention in RLNC optimization so far. The primary research question of my thesis is therefore how to optimize throughput and delay of RLNC on todays most common computing architectures. By fully leveraging the resources of todays consumer electronics hardware, RLNC can be practically adopted in todays wireless systems with just a software update and improve the network efficiency and user experience. I am generally following a constructive approach by introducing algorithms and methods, and then demonstrating their performance by benchmarking actual implementations on common consumer electronics hardware against the state of the art. Inspired by linear algebra parallelization methods used in high performance computers (HPC), I’ve developed a RLNC encoder/decoder which schedules matrix block tasks for multiple cores using a directed acyclic graph (DAG) based on data dependencies between the tasks. A non-progressive variant works with pre-computed DAG schedules which can be re-used to push throughput even higher. I’ve also developed a progressive variant which can be used to minimize latency. Both variants are achieving higher throughput performance than the fastest currently known RLNC decoder, with up to three times the throughput for small generation size and short packets. Unlike previous approaches, they can utilize all cores also on heterogeneous architectures. The progressive decoder greatly reduces latency while allowing to keep a high throughput, reducing the latency up to a factor ten compared to the non-progressive variant. Progressive decoders need special low-delay codes to release packets early instead of waiting for more dependent packets from the network. I'm introducing Caterpillar RLNC (CRLNC), a sliding window code using a fixed sliding window over a stream of packets. CRLNC can be implemented on top of a conventional generation based RLNC decoder. CRLNC combines the resilience against packet loss and fixed resource boundaries (number of computations and memory) of conventional generation based RLNC decoders with the low delay of an infinite sliding window decoder. The DAG RLNC coders and the Caterpillar RLNC method together provide a powerful toolset to practically enable RLNC in 5G or other wireless systems while achieving high throughput and low delay as required by upcoming immersive and machine control applications.:1 Introduction 2 Background and Related Work 2.1 Network Delay 2.2 Network Coding Basics 2.3 RLNC Optimization for Throughput 2.3.1 SIMD Optimization 2.3.2 Block Operation Increasing Cache Efficieny with Subblocking 2.3.3 Optimizing Matrix Computations 2.4 Progressive RLNC Decoders 2.5 Sliding Window RLNC 3 Optimized RLNC Parallelization with Scheduling Graphs 3.1 Offline Directed Acyclic Graph (DAG) Scheduling 3.1.1 Blocked LU Matrix Inversion 3.1.2 Scheduling on a DAG 3.1.3 Phase 1: DAG Recording 3.1.4 Phase 2: DAG Schedule Execution 3.1.5 DAG Scheduling vs. Conventional Multithreading 3.1.6 Task Size Considerations 3.1.7 Scheduling Strategies First Task Strategy Task Dependency Strategy Data Locality Strategy Combined Task Dependency and Data Locality Strategy 3.2 Online DAG Scheduling 3.2.1 Online DAG Operation Forward Elimination Backward Substitution Row Swapping 3.2.2 Scheduling on an Online DAG Data Dependency Traversal Online DAG Creating and Task Delegation 3.2.3 Optimizations Stripe Optimization Full Rows Optimization 3.3 Evaluation Setup 3.3.1 Multicore Boards ODROID-XU3 ODROID-XU4 ODROID-XU+E Cubieboard 4 Raspberry Pi 2 Model B 3.3.2 Evaluation Parameters Parameter Settings Matrix Types 3.3.3 Performance Metrics Throughput Delay Energy 3.3.4 Evaluation Methodology 3.4 Evaluation Results 3.4.1 Block Size b 3.4.2 Comparison of Scheduling Strategies 3.4.3 Single Thread Throughput 3.4.4 Multi Thread Throughput 3.4.5 Comparison of Multicore Boards 3.4.6 Energy Consumption 3.4.7 Online DAG vs. Offline DAG Throughput 3.4.8 DAG vs Progressive CD 3.4.9 Delay 3.4.10 Trading Throughput with Delay 3.4.11 Sparse Coefficient Matrices in Online DAG 4 Sliding Window - Caterpillar RLNC (CRLNC) 4.1 CRLNC Overview 4.2 CRLNC Packet Format And Encoding 4.3 CRLNC Decoding 4.3.1 Shifting the Row Echelon Form Same sequence number: s_p = s_d New Packet: s_p > s_d Old Packet: s_p < s_d 4.3.2 Larger Decoding Windows: w_d > w_e 4.3.3 CRLNC Decoding Storage and Computing Requirements 4.4 CRLNC Evaluation 4.4.1 Performance Metrics Packet Loss Probability In-Order Packet Delay 4.4.2 Evaluation Methodology 4.5 Evaluation Results 4.5.1 Packet Loss Probability 4.5.2 In-Order Packet Delay 4.5.3 Tradeoffs for Larger Decoding Windows 4.5.4 Computation Complexity 5 Summary and Conclusion List of Publications Bibliography
136

Entwurf eines drahtlosen HF-Empfängers basierend auf Bandpass-Sigma-Delta-ADU

Kostack, Robert 15 November 2019 (has links)
Die vorliegende Arbeit beschreibt die Analyse und den Entwurf eines vollintegrierten Empfängers im UHF-Bereich mit dem Ziel, für die Verwendung im Mobilfunkstandard der vierten Generation geeignet zu sein, aber auch eine Einschätzung bezüglich der Anwendbarkeit eines solchen Empfängers für Geräte der fünften Generation vorzunehmen. Bei dem Empfängerkonzept handelt es sich um einen direkt digitalisierenden Empfänger, d.h. das Empfangssignal wird direkt mittels Analog-Digital-Umsetzer digitalisiert und vorher nicht auf eine niedrigere Trägerfrequenz abwärtsgemischt. Der Analogteil eines direkt digitalisierenden Empfängers besteht also nur aus einem LNA und einem ADU. Diese Empfängertopologie stellt hohe Anforderungen an den ADU und bildet deshalb den Fokus dieser Arbeit. Für die Untersuchungen des Empfängerkonzepts wurde sich auf eine Implementierung für niedrige Mobilfunkfrequenzbänder beschränkt, weshalb für den Entwurf festgelegt wurde, eine Trägerfrequenz von 750MHz mit einer Signalbandbreite von 20MHz empfangen und verarbeiten zu können. Der Entwurf erfolgte in einer 28nm CMOS Technologie, sollte flächen- und stromsparend sein, sich aber auch für zukünftige Technologieknoten mit noch höherer Integrationsdichte eignen, ohne die analogen Schaltblöcke gesondert bei der Technologiewahl berücksichtigen zu müssen. Somit konnten integrierte Spulen in der Empfängerkette nicht verwendet werden. Zugleich muss im Empfänger der Alias-Effekt unterdrückt werden. Um diese strengen Rahmenbedingungen ohne exorbitante Stromaufnahme zu erfüllen, kommt als ADU-Topologie nur ein zeitkontinuierlicher Sigma-Delta-Modulator in Frage. Dazu musste das Schleifenfilter des Sigma-Delta-Modulators komplett neu entworfen werden, was u.a. den Entwurf einer einstellbaren hochgütigen aktiven Spule erforderte. Das Empfängerkonzept konnte erfolgreich an der gefertigten Schaltung verifiziert werden, der gemessene dynamische Bereich blieb jedoch weit hinter dem ursprünglich anvisierten Ziel von 84dB zurück. Es konnte lediglich ein dynamischer Bereich von 59dB bei einer Leistungsaufnahme von 36,4mW und einer maximalen Auflösung von 4,5 Bit erreicht werden. Nachfolgende Untersuchungen des Konzepts zeigen aber Lösungsansätze auf, mit denen die Auflösung auf 8,7 Bit und der Dynamikbereich auf 69dB gesteigert werden kann.
137

Plug and Produce für modulare verfahrenstechnische Anlagen

Obst, Michael 18 November 2019 (has links)
Sales market in process industry, especially for chemical, pharmaceutical and food industry, is becoming more and more volatile. Furthermore, the global availability of alternative products shortens the product life cycle. At the same time, the requested volumes depend on strong regional and temporal fluctuations, which are increasingly difficult to predict. To be able to bring product innovations successfully to market, rapid series-production readiness of the prototype is needed. However, the competition after successful approval is increasingly getting tougher. As soon as the product has been accepted by the market, the time necessary to reach sufficient product quantities with required product quality is essential for its profitability. By the end of the product life cycle, the production should be close to the largest remaining sales markets, which means that the production can be shifted accordingly. Classical production processes in process industry do not fulfil these requirements jet. Conti-systems are optimized for a certain production quantity per unit of time, which should not be changed for years, if possible. The higher flexibility of conventional batch plants is associated with unproductive times, for example during conversion. However, modularization of process plants with flexible combinatory design would allow faster turnover times and higher productivity. Individual modules realize standardized production steps and can be combined according to the requested product. Changes to the product are achieved by the exchange of modules, the production quantity can be increased by adding more of the same modules. The integration of a module into an upper classic process control system is laborious using the information models and tools available today. Various aspects of automation, such as human machine interfaces, statuses of sequences or interlocks must be added manually for the visualization and guidance of the module in an upper process control system. However, today's control systems are not prepared to provide the required flexibility of a system based on different modules. This drawback requires a modular plug-and-production methodology. Therefore, an outright modeling of information, beginning with modular and function-oriented integrated engineering is needed. On the one hand, this work considers with a selection of integration aspects, a detailed modeling of this aspects in an information carrier and the integration into the process control level. On the other hand, the concrete selection of one or more descriptive formats is analyzed. For this purpose, a uniform integration architecture and an integration process is described, this allows integration into an upper process control system level. This analysis shows that, with the available descriptive formats, a mapping of the individual integration aspects into an information carrier is possible. It is important to distinguish whether a separate mapping is chosen for each aspect, as chosen by GrapML in the second practical implementation, or whether a uniform format is used for the entire information carrier. The evaluation of the description formats suggests for the use in the information carrier AutomationML. The practical implementation and investigation with AutomationML are already in the scope of the Namur MTP developments and couldn’t therefore investigated deeply in this work. For the most important aspects, the human machine interface as well as the process management, detailed information modeling is available and was checked during implementation. Two different possibilities were presented and discussed for the selection of description formats. To allow flexible extensibility, it is advantageous to choose a description means in which the integration aspects are described separately from each other, independently of the specifically chosen format. A uniform interface within automation systems is required for the needs of the so-called industry 4.0 for the networking and consistency of all components involved throughout the entire life cycle. This work provides the first building blocks of this approach and enables application in process industry but also manufacturing industry.
138

Stromführende Verbindungen und Leiterwerkstoffe der Elektroenergietechnik: Theorie zum Kontakt- und Langzeitverhalten von Schraubenverbindungen mit Flächenkontakten

Schlegel, Stephan 21 January 2020 (has links)
Für einen sicheren und zuverlässigen Betrieb des gesamten Elektroenergieversorgungs-systems ist der langzeitstabile und möglichst wartungsfreie oder wartungsarme Betrieb jeder einzelnen Komponente wichtig. Eine Wartung aller stromführenden Verbindungen ist aufgrund der Anzahl und ihrer Zugänglichkeit nicht möglich. Eine Großzahl der Verbindungen wird deshalb montiert und muss über die geforderte Lebensdauer der Anlagen von mehreren Jahrzehnten wartungsfrei funktionieren. Um dies gewährleisten zu können, müssen die richtigen Leiter- und Beschichtungswerkstoffe gewählt, eine langzeitstabile Konstruktion vorhanden, die richtige Montage durchgeführt und eine gesicherte Grenztemperatur für die gewünschte Lebensdauer unter Berücksichtigung der Umgebungsbedingungen bekannt sein. In dieser Arbeit werden stromführende Verbindungen betrachtet, die keinen Lichtbogen führen müssen. Es werden die wichtigsten Leiter- und Beschichtungswerkstoffe, die Kontaktphysik insbesondere von Flächenkontakten, der Zusammenhang zwischen mechanischem und elektrischem Kontaktverhalten, die Physik der Alterung und die Wirkung auf das Langzeitverhalten bei unterschiedlichen Einsatz- und Umgebungsbedingungen betrachtet. Basierend auf diesen Erkenntnissen werden genormte Prüfverfahren bewertet und Ansätze zum Weiterentwickeln vorgestellt. Die Erkenntnisse dieser Arbeit basieren auf Ergebnissen, die in 40 Jahren Forschung an der TU Dresden erarbeitet wurden. Als Modellgeometrie für die grundlegenden experimentellen Untersuchungen wurden insbesondere Schrauben¬verbindungen mit Stromschienen verwendet, da diese Verbindungsart eine der am häufigsten verwendeten ist und millionenfach im Elektroenergieversorgungssystem eingesetzt wird.:1 Einleitung 2 Funktion und Anforderung an stromführende Verbindungen 3 Kontaktwerkstoffe 3.1 Leiter 3.2 Beschichten von Leitern 4 Kontaktverhalten von Schraubenverbindungen 4.1 Physikalische Grundlagen zum Flächenkontakt 4.2 Schraubenverbindung mit Stromschienen 4.2.1 Mechanisches Kontaktverhalten 4.2.2 Elektrisches Kontaktverhalten 4.2.3 Zusammenhang elektrisches und mechanisches Kontaktverhalten 4.2.4 Montage stromführender Verbindungen 4.2.5 Verallgemeinern der gewonnenen Erkenntnisse 5 Langzeitverhalten von Schraubenverbindungen 5.1 Alterungsmechanismen 5.1.1 Kraftabbau 5.1.2 Diffusion 5.1.3 Chemische Reaktionen 5.1.4 Reibverschleiß 5.1.5 Elektromigration 5.2 Mathematische Ansätze zum Beschreiben der Alterung 5.3 Experimentell ermittelte Lebensdauerkennlinien 5.3.1 Typische Lebensdauerkennlinie von Schraubenverbindungen 5.3.2 Leiterwerkstoffe - Aluminium, Kupfer und deren Legierungen 5.3.3 Beschichtungswerkstoffe - Silber, Nickel, Zinn 6 Prüfverfahren 7 Zusammenfassung und Ausblick 8 Literaturverzeichnis 9 Abbildungsverzeichnis 10 Tabellenverzeichnis / For a safe and reliable operation of the electric power supply system, the long-term stable and low-maintenance or maintenance-free operation of each component is important. Maintenance of all current-carrying joints is not possible due to their number and accessibility. A large number of joints is installed and must operate during the required life-time of the system of several decades maintenance-free. In order to warrant this, the appropriate conductor and coating material must be selected, a long-term stable construction design must be provided, the correct installation must be guaranteed, and a safe temperature limit for the desired life-time must be known according to the ambient conditions. In this work, non-arcing current-carrying joints are investigated. It considers the most important conductor and coating materials, the physics of surface contacts, the relationship between mechanical and electrical contact behavior, the physics of aging and the effects on the long-term behavior under different conditions of use and environmental conditions. Based on these scientific findings, standardized test methods are evaluated and approaches for further development are presented. The findings of this work are based on the results obtained in 40 years of research at the TU Dresden. As a model geometry for the basic experimental investigations bolted joints with bus bars are used, because this type of joint is one of the most commonly used millions of times in the electric power supply system.:1 Einleitung 2 Funktion und Anforderung an stromführende Verbindungen 3 Kontaktwerkstoffe 3.1 Leiter 3.2 Beschichten von Leitern 4 Kontaktverhalten von Schraubenverbindungen 4.1 Physikalische Grundlagen zum Flächenkontakt 4.2 Schraubenverbindung mit Stromschienen 4.2.1 Mechanisches Kontaktverhalten 4.2.2 Elektrisches Kontaktverhalten 4.2.3 Zusammenhang elektrisches und mechanisches Kontaktverhalten 4.2.4 Montage stromführender Verbindungen 4.2.5 Verallgemeinern der gewonnenen Erkenntnisse 5 Langzeitverhalten von Schraubenverbindungen 5.1 Alterungsmechanismen 5.1.1 Kraftabbau 5.1.2 Diffusion 5.1.3 Chemische Reaktionen 5.1.4 Reibverschleiß 5.1.5 Elektromigration 5.2 Mathematische Ansätze zum Beschreiben der Alterung 5.3 Experimentell ermittelte Lebensdauerkennlinien 5.3.1 Typische Lebensdauerkennlinie von Schraubenverbindungen 5.3.2 Leiterwerkstoffe - Aluminium, Kupfer und deren Legierungen 5.3.3 Beschichtungswerkstoffe - Silber, Nickel, Zinn 6 Prüfverfahren 7 Zusammenfassung und Ausblick 8 Literaturverzeichnis 9 Abbildungsverzeichnis 10 Tabellenverzeichnis
139

Index Modulation Techniques for Energy-efficient Transmission in Large-scale MIMO Systems

Sefunc, Merve 16 March 2020 (has links)
This thesis exploits index modulation techniques to design energy- and spectrum-efficient system models to operate in future wireless networks. In this respect, index modulation techniques are studied considering two different media: mapping the information onto the frequency indices of multicarrier systems, and onto the antenna array indices of a platform that comprises multiple antennas. The index modulation techniques in wideband communication scenarios considering orthogonal and generalized frequency division multiplexing systems are studied first. Single cell multiuser networks are considered while developing the system models that exploit the index modulation on the subcarriers of the multicarrier systems. Instead of actively modulating all the subcarriers, a subset is selected according to the index modulation bits. As a result, there are subcarriers that remain idle during the data transmission phase and the activation pattern of the subcarriers convey additional information. The transceivers for the orthogonal and generalized frequency division multiplexing systems with index modulation are both designed considering the uplink and downlink transmission phases with a linear combiner and precoder in order to reduce the system complexity. In the developed system models, channel state information is required only at the base station. The linear combiner is designed adopting minimum mean square error method to mitigate the inter-user-interference. The proposed system models offer a flexible design as the parameters are independent of each other. The parameters can be adjusted to design the system in favor of the energy efficiency, spectrum efficiency, peak-to-average power ratio, or error performance. Then, the index modulation techniques are studied for large-scale multiple-input multiple-output systems that operate in millimeter wave bands. In order to overcome the drawbacks of transmission in millimeter wave frequencies, channel properties should be taken in to account while envisaging the wireless communication network. The large-scale multiple-input multiple-output systems increase the degrees of freedom in the spatial domain. This feature can be exploited to focus the transmit power directly onto the intended receiver terminal to cope with the severe path-loss. However, scaling up the number of hardware elements results in excessive power consumption. Hybrid architectures provide a remedy by shifting a part of the signal processing to the analog domain. In this way, the number of bulky and high power consuming hardware elements can be reduced. However, there will be a performance degradation as a consequence of renouncing the fully digital signal processing. Index modulation techniques can be combined with the hybrid system architecture to compensate the loss in spectrum efficiency to further increase the data rates. A user terminal architecture is designed that employs analog beamforming together with spatial modulation where a part of the information bits is mapped onto the indices of the antenna arrays. The system is comprised a switching stage that allocates the user terminal antennas on the phase shifter groups to minimize the spatial correlation, and a phase shifting stage that maximizes the beamforming gain to combat the path-loss. A computationally efficient optimization algorithm is developed to configure the system. The flexibility of the architecture enables optimization of the hybrid transceiver at any signal-to-noise ratio values. A base station is designed in which hybrid beamforming together with spatial modulation is employed. The analog beamformer is designed to point the transmit beam only in the direction of the intended user terminal to mitigate leakage of the transmit power to other directions. The analog beamformer to transmit the signal is chosen based on the spatial modulation bits. The digital precoder is designed to eliminate the inter-user-interference by exploiting the zero-forcing method. The base station computes the hybrid beamformers and the digital combiners, and only feeds back the digital combiners of each antenna array-user pair to the related user terminals. Thus, a low complexity user architecture is sufficient to achieve a higher performance. The developed optimization framework for the energy efficiency jointly optimizes the number of served users and the total transmit power by utilizing the derived upper bound of the achievable rate. The proposed transceiver architectures provide a more energy-efficient system model compared to the hybrid systems in which the spatial modulation technique is not exploited. This thesis develops low-complexity system models that operate in narrowband and wideband channel environments to meet the energy and spectrum efficiency demands of future wireless networks. It is corroborated in the thesis that adopting index modulation techniques both in the systems improves the system performance in various aspects.:1 Introduction 1 1.1 Motivation 1 1.2 Overview and Contribution 2 1.3 Outline 9 2 Preliminaries and Fundamentals 13 2.1 Multicarrier Systems 13 2.2 Large-scale Multiple Input Multiple Output Systems 17 2.3 Index Modulation Techniques 19 2.4 Single Cell Multiuser Networks 22 3 Multicarrier Systems with Index Modulation 27 3.1 Orthogonal Frequency Division Multiplexing 28 3.2 Generalized Frequency Division Multiplexing 40 3.3 Summary 52 4 Hybrid Beamforming with Spatial Modulation 55 4.1 Uplink Transmission 56 4.2 Downlink Transmission 74 4.3 Summary 106 5 Conclusion and Outlook 109 5.1 Conclusion 109 5.2 Outlook 111 A Quantization Error Derivations 113 B On the Achievable Rate of Gaussian Mixtures 115 B.1 The Conditional Density Function 115 B.2 Tight Bounds on the Differential Entropy 116 B.3 A Bound on the Achievable Rate 118 C Multiuser MIMO Downlink without Spatial Modulation 121 Bibliography
140

Enhancement of n-channel Organic Field-Effect Transistor Performance through Surface Doping and Modification of the Gate Oxide by Aminosilanes

Shin, Nara 22 August 2019 (has links)
In this these, in order to enhance the n-channel organic field-effect transistor (OFET) performance, amino functionalized self-assembled monolayers (A-SAMs) which consist of amino groups, a well-known n-type dopant candidate, were introduced from the top of OFET surfaces and on the gate oxide surfaces. To obtain better understanding for optimization of OFET performances we attempted to elucidate the mechanism of surface doping and surface modification by A-SAMs. Both the surface doping and surface modification of the gate oxide approaches have individual pros and cons. One needs to take into account the surface energy properties of SAMs and the resulting OSC film structure and pick the most suitable method to introduce the SAM material to the OFET (either doping or oxide modification) in order to obtain optimized device performances. Our study strongly suggests that both surface doping and surface modification of the gate oxide with A-SAMs could enhance other semiconductor-based electronic device performances.:Abstract v Chapter 1. Introduction 1 Chapter 2. Theoretical Background 7 2.1. Organic Semiconductors (OSCs) 8 2.1.1. Semiconducting properties of organic molecules 8 2.1.2. Charge Transport Mechanism in OSCs 10 2.2. Organic Field-Effect Transistors (OFETs) 18 2.2.1. Operation Principle 18 2.2.2. Device Geometry of OFETs 20 2.2.3. Contacts (metal/semiconductor junction) in OFETs 21 2.2.4. Dielectric material for OFETs 23 2.2.5. Current-Voltage Characteristics of OFETs 25 2.3. Dominant contributors to OFET Performance 32 2.3.1. Molecular structure and Orientation of OSCs 32 2.3.2. Dielectric/OSC Interface 33 2.3.3. OSC/Contact Interface (Contact resistance) 35 2.3.4. Shallow and deep traps 36 2.4. Strategies to improve OFET performance 37 2.4.1. Introducing dopants to OFETs 37 2.4.2. Modification of Gate Oxide Layer with SAMs 44 Chapter 3. Experimental 51 3.1. Device Fabrication 52 3.1.1. Device type I - Substrate/ODTMS/PTCDI-C8/Au 53 3.1.2. Device type II - Substrate/ODTCS/N2200 (PNDI2OD-2T)/Au 53 3.1.3. Device type III - Substrate/SAMs/PTCDI-C8/Au 54 3.2. Surface doping process 56 3.2.1. Surface dopant – Aminosilanes (A-SAMs) 56 3.2.2. Surface doping method 56 3.3. Characterization 59 3.3.1. Material characterization 59 3.3.2. Surface-wetting characterization - Contact angle measurement 61 3.3.3. Micro-structure characterization - Atomic Force Microscopy (AFM) 62 3.3.4. Surface potential characterization – Kelvin Probe Force Microscopy (KPFM) 63 3.3.5. Molecular Structure Characterization - Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 64 3.3.6. Electrical Characterization - Current-voltage (I-V) measurement 66 Chapter 4. Result and Discussion 69 4.1. Optimization of OFETs based on PTCDI-C8 and N2200 70 4.1.1. PTCDI-C8 OFETs 70 4.1.2. N2200 OFETs 72 4.1.3. Device measurement condition 75 4.2. Investigation of Surface doping mechanism of Aminosilanes 77 4.2.1. Surface doping effect depending on the dopant processing method 77 4.2.2. Surface doping effect for different types of organic semiconductors 80 4.2.3. Surface doping effect for different types of surface dopants 89 4.2.4. Surface doping effect for different OSC grain sizes 92 4.2.5. Surface doping effect for different OSC film thicknesses 103 4.2.6. Molecular structure of the doped films identified by GIWAXS 106 4.2.7. Stability of the surface doped OFETs 107 4.2.8. Summary 111 4.3. Modification of the gate oxide with various self-assembled monolayers 112 4.3.1. The surface property of SAM-treated substrates 112 4.3.2. The relation between the OSC morphology and the field-effect mobility 115 4.3.3. The origin of the threshold voltage shift 126 4.3.4. Memristive effects in PTCDI-C8 devices on ODTMS 133 4.3.5. Summary 137 4.4. Comparison of the surface doping and the modification of the gate dielectric 138 4.4.1. The reliability factor of OFETs 138 4.4.2. The threshold voltages and field-effect mobility of OFETs 141 4.4.3. Density of Interfacial trap sites and SAM induced mobile carriers 143 4.4.4. Summary 144 Chapter 5. Conclusion 145 Bibliography 148 List of Figures 158 List of Tables 166 List of Equations 167 Acknowledgment 168 Erklärung zur Eröffnung des Promotionsverfahrens 169

Page generated in 0.0435 seconds