101 |
Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic MediaStriggow, Friedrich, Medina-Sánchez, Mariana, Auernhammer, Günter K., Magdanz, Veronika, Friedrich, Benjamin M., Schmidt, Oliver G. 22 July 2022 (has links)
Biohybrid micromotors propelled by motile cells are fascinating entities for autonomous biomedical operations on the microscale. Their operation under physiological conditions, including highly viscous environments, is an essential prerequisite to be translated to in vivo settings. In this work, a sperm-driven microswimmer, referred to as a spermbot, is demonstrated to operate in oviduct fluid in vitro. The viscoelastic properties of bovine oviduct fluid (BOF), one of the fluids that sperm cells encounter on their way to the oocyte, are first characterized using passive microrheology. This allows to design an artificial oviduct fluid to match the rheological properties of oviduct fluid for further experiments. Sperm motion is analyzed and it is confirmed that kinetic parameters match in real and artificial oviduct fluids, respectively. It is demonstrated that sperm cells can efficiently couple to magnetic microtubes and propel them forward in media of different viscosities and in BOF. The flagellar beat pattern of coupled as well as of free sperm cells is investigated, revealing an alteration on the regular flagellar beat, presenting an on–off behavior caused by the additional load of the microtube. Finally, a new microcap design is proposed to improve the overall performance of the spermbot in complex biofluids.
|
102 |
Shape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer ActuatorsRivkin, Boris, Becker, Christian, Akbar, Farzin, Ravishankar, Rachappa, Karnaushenko, Dmitriy D., Naumann, Ronald, Mirhajivarzaneh, Alaleh, Medina-Sánchez, Mariana, Karnaushenko, Daniil, Schmidt, Oliver G. 22 July 2022 (has links)
The next generation of biomedical tools requires reshapeable electronics to closely interface with biological tissues. This will offer unique mechanical properties and the ability to conform to irregular geometries while being robust and lightweight. Such devices can be achieved with soft materials and thin-film structures that are able to reshape on demand. However, reshaping at the submillimeter scale remains a challenging task. Herein, shape-controlled microscale devices are demonstrated that integrate electronic sensors and electroactive polymer actuators. The fast and biocompatible actuators are capable of actively reshaping the device into flat or curved geometries. The curvature and position of the devices are monitored with strain or magnetic sensors. The sensor signals are used in a closed feedback loop to control the actuators. The devices are wafer-scale microfabricated resulting in multiple functional units capable of grasping, holding, and releasing biological tissues, as demonstrated with a neuronal bundle.
|
103 |
Origin of Temperature-Dependent Ferroelectricity in SiDoped HfO₂Park, Min Hyuk, Chung, Ching-Chang, Schenk, Tony, Richter, Clauda, Hoffmann, Michael, Wirth, Steffen, Jones, Jacob L., Mikolajick, Thomas, Schroeder, Uwe 24 August 2022 (has links)
The structural origin of the temperature-dependent ferroelectricity in Si-doped HfO₂ thin films is systematically examined. From temperature-dependent polarization-electric field measurements, it is shown that remanent polarization increases with decreasing temperature. Concurrently, grazing incidence X-ray diffraction shows an increase in the orthorhombic phase fraction with decreasing temperature. The temperature-dependent evolution of structural and ferroelectric properties is believed to be highly promising for the electrocaloric cooling application. Magnetization measurements do not provide any indication for a change of magnetization within the temperature range for the strong crystalline phase transition, suggesting that magnetic and structural properties are comparatively decoupled. The results are believed to provide the first direct proof of the strongly coupled evolution of structural and electrical properties with varying temperature in fluorite oxide ferroelectrics.
|
104 |
Broad Phase Transition of Fluorite-Structured Ferroelectrics for Large Electrocaloric EffectPark, Min Hyuk, Mikolajick, Thomas, Schroeder, Uwe, Hwang, Cheol Seong 30 August 2022 (has links)
Field-induced ferroelectricity in (doped) hafnia and zirconia has attracted increasing interest in energy-related applications, including energy harvesting and solid-state cooling. It shows a larger isothermal entropy change in a much wider temperature range compared with those of other promising candidates. The field-induced phase transition occurs in an extremely wide temperature range, which contributes to the giant electrocaloric effect. This article examines the possible origins of a large isothermal entropy change, which can be related to the extremely broad phase transitions in fluorite-structured ferroelectrics. While the materials possess a high entropy change associated with the polar–nonpolar phase transition, which can contribute to the high energy performance, the higher breakdown field compared with perovskites practically determines the available temperature range.
|
105 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
106 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
107 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
108 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
109 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
110 |
Jahresbericht / Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für FestkörperelektronikTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Institut für Festkörperelektronik 27 May 2024 (has links)
No description available.
|
Page generated in 0.0171 seconds