• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 115
  • 45
  • Tagged with
  • 408
  • 408
  • 323
  • 321
  • 321
  • 63
  • 59
  • 37
  • 32
  • 30
  • 30
  • 28
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Verlustbestimmung und Leistungsmessung an elektrischen Antrieben

Winkler, Stefan 28 June 2018 (has links)
Diese Veröffentlichung beschreibt die Vorgehensweise bei der Messung und Berechnung elektrischer Leistungen im Allgemeinen und bei der Verlustbestimmung an elektrischen Antrieben im speziellen.
72

Localized Flow and Analysis of 2D and 3D Vector Fields

Wiebel, Alexander, Garth, Christoph, Scheuermann, Gerik 18 October 2018 (has links)
In this paper we present an approach to the analysis of the contribution of a small subregion in a dataset to the global flow. To this purpose, we subtract the potential flow that is induced by the boundary of the sub-domain from the original flow. Since the potential flow is free of both divergence and rotation, the localized flow field retains the original features. In contrast to similar approaches, by making explicit use of the boundary flow of the subregion, we manage to isolate the region-specific flow that contains exactly the local contribution of the considered subdomain to the global flow. In the remainder of the paper, we describe an implementation on unstructured grids in both two and three dimensions. We discuss the application of several widely used feature extraction methods on the localized flow, with an emphasis on topological schemes.
73

Herstellung von Einzelschichten und Solarzellen im Bereich der sehr hohen Plasmaanregungsfrequenzen (VHF) und Schichtdiagnostik

Leszczyńska, Barbara 02 October 2020 (has links)
Diese Arbeit beschäftigt sich mit den wesentlichen Aspekten der Hochrateabscheidung von amorphen (a-Si:H) und mikrokristallinen (μc-Si:H) Silizium-Schichten und Solarzellen. Die neuartige plasmaunterstützte chemische Gasphasenabscheidung unter Anwendung von den sehr hohen Anregungsfrequenzen bis 140 MHz (VHF-PECVD) wurde demonstriert. Die durchgeführten Untersuchungen befassten sich hauptsächlich mit der Anpassung der Anlagentechnik für den VHF Bereich und der Entwicklung des hochproduktiven Herstellungsverfahrens ohne Einbußen bei den Schichteigenschaften und dem Solarzellenwirkungsgrad. Durch Frequenzerhöhung bis 140 MHz wurde eine Steigerung der i-Schicht-Abscheiderate von 70 % sowohl für a-Si:H als auch für μc-Si:H realisiert. Die Weiteroptimierung des Solarzellenaufbaus zeigt die hervorragende Eignung des Herstellungsprozesses für die Abscheidung von hocheffizienten Solarzellen (ca. 10,7 % für a-Si:H- und 9,5 % für μc-Si:H-Zellen). Der neuartige VHF-PECVD-Prozess wurde außerdem für die Abscheidung von den Passivierungsschichten für die Silizium-Heteroübergangs-Solarzellen (HIT) getestet. Die Arbeit im VHF-Bereich ermöglicht einen Einsatz von hohen Depositionsraten bis 1 nm/s ohne Einbußen bei den Passivierungseigenschaften (2 ms Lebensdauer) im Vergleich zum 13,56-MHz-Prozess (0,5 ms Lebensdauer). Zuletzt wurde eine Analyse der Zusammenhänge zwischen Anregungsfrequenz, Plasmaleistung, Ionenenergie, Ioneneindringtiefe und Defektbildung in den intrinsischen Dünnschichtsiliziumschichten durchgeführt.:I. Abkürzungs- und Symbolverzeichnis vii 1 Einleitung 1 2 Physikalische und technologische Grundlagen 7 2.1 Plasmaunterstützte chemische Gasphasenabscheidung 7 2.1.1 Prozessparameter 9 2.1.2 Frequenzeinfluss 10 2.2 Amorphes und mikrokristallines Silizium 14 2.2.1 Eigenschaften von Dünnschichtsilizium 15 2.2.2 Siliziumbasierte Dünnschichtsolarzellen 20 2.2.3 Siliziumbasierte Solarzellen mit Heteroübergang 21 3 Entwicklung des Abscheidungsprozesses bis 140 MHz 23 3.1 Herstellung von dünnen Siliziumschichten 23 3.1.1 VHF-PECVD-Durchlaufanlage mit linearen Elektroden 24 3.1.2 F&E-Testanlage 25 3.2 Anpassung des Abscheidungssystems für sehr hohe Frequenzen 26 3.2.1 Temperaturregelung der HF Elektrode 26 3.2.2 Kompensation des Tiefpassverhaltens 28 3.2.3 Leistungseinkopplung 31 3.3 Homogenität der VHF-Abscheidung 32 3.4 Charakterisierung von dünnen Siliziumschichten und Solarzellen 34 3.4.1 Leitfähigkeitsmessung 34 3.4.2 Transmissionsmessungen im UV-VIS-NIR-Bereich 35 3.4.3 Fourier-Transform-Infrarotspektroskopie 37 3.4.4 Raman-Spektroskopie 38 3.4.5 Solarzellencharakterisierung 39 3.4.6 Messungen der effektiven Lebensdauer 42 3.5 Zusammenfassung der Ergebnisse 43 4 Hydrogeniertes amorphes Silizium im VHF-Bereich 45 4.1 Intrinsische a-Si:H Einzelschichten bis 140 MHz 45 4.1.1 Optische Eigenschaften 47 4.1.2 Strukturelle Eigenschaften 48 4.1.3 Elektrische Eigenschaften 51 4.2 a-Si:H-Solarzellen bis 140 MHz 52 4.2.1 Variation der Silankonzentration 53 4.2.2 Abscheiderateerhöhung durch Prozessleistung 56 4.3 Weitere Entwicklung der amorphen Silizium-Solarzellen 61 4.4 Zusammenfassung der Ergebnisse 62 5 Hydrogeniertes mikrokristallines Silizium im VHF-Bereich 65 5.1 μc-Si:H Schichten und Solarzellen – HPD-Regime 68 5.1.1 Einfluss des Prozessdruckes und der Silankonzentration bei hohen Gasflusswerten 69 5.1.2 Einfluss der Leistung bei hohen Gasflusswerten 72 5.2 μc-Si:H Schichten und Solarzellen – Frequenzerhöhung 74 5.2.1 μc-Si:H Schichteigenschaften – Vergleich 120 und 140 MHz 74 5.2.2 μc-Si:H Solarzellen – Vergleich 120 und 140 MHz 76 5.3 Weitere Entwicklung der μc-Si:H Solarzellen 78 5.4 Zusammenfassung der Ergebnisse 79 6 Passivierungsschichten für HIT-Solarzellen 81 6.1 Schichteigenschaften – Vergleich zwischen 13,56 und 140 MHz 81 6.2 H2-Plasma-Vorreinigung 84 6.3 Passivierungsschichten – Frequenzeinfluss 87 6.4 Zusammenfassung der Ergebnisse 88 7 Simulationsstudie 89 7.1 Ionenbeschussenergie 89 7.1.1 Modellübersicht – Ar-Plasma 90 7.1.2 Einfluss der Leistung und Betriebsfrequenz 91 7.2 Simulation des Ionenbeschusses 92 7.2.1 TRIM–Simulationssoftware 92 7.2.2 Ionenbeschuss auf die a-Si:H-Oberfläche 93 7.3 Solarzellen – Defekte in der i- Schicht 94 7.3.1 ASA–Simulationssoftware 95 7.3.2 Parameterset 99 7.3.3 Einfluss der Defektdichte auf Solarzelleneigenschaften 101 7.4 Zusammenfassung der Ergebnisse 102 8 Zusammenfassung und Ausblick 105 II. Abbildungsverzeichnis 111 III. Tabellenverzeichnis 117 IV. Literaturverzeichnis 119 V. Veröffentlichungen 129 VI. Lebenslauf 131 VII. Danksagung 133 / The following thesis deals with the main aspects of the high-rate deposition of amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon layers and solar cells. The very high frequency plasma enhanced chemical vapor deposition technique with excitation frequencies up to 140 MHz (VHF-PECVD) has been introduced. These study deals mainly with the adaptation of the deposition system for the VHF-range and the development of the highly productive manufacturing process without deterioration of the layer properties and the solar cell efficiency. An increase of the excitation frequency up to 140 MHz ensured a 70 % enhancement of the a-Si:H and μc-Si:H deposition rate. A further optimization of the solar cells shows the excellent suitability of these manufacturing process for the deposition of the highly efficient solar cells (about 10.7% for a-Si:H and 9.5% for μc-Si:H cells). The novel VHF-PECVD process has also been analyzed for the deposition of the passivation layers for the silicon heterojunction solar cells (HIT). Working in the VHF-range allows the use of very high deposition rates up to 1 nm/s, without deterioration of the passivation properties (2 ms lifetime) compared to the 13.56 MHz process (0.5 ms lifetime). Finally, an analysis of the correlations between excitation frequency, plasma power, ion energy, ion penetration depth and defect formation in the intrinsic thin film silicon layers was performed.:I. Abkürzungs- und Symbolverzeichnis vii 1 Einleitung 1 2 Physikalische und technologische Grundlagen 7 2.1 Plasmaunterstützte chemische Gasphasenabscheidung 7 2.1.1 Prozessparameter 9 2.1.2 Frequenzeinfluss 10 2.2 Amorphes und mikrokristallines Silizium 14 2.2.1 Eigenschaften von Dünnschichtsilizium 15 2.2.2 Siliziumbasierte Dünnschichtsolarzellen 20 2.2.3 Siliziumbasierte Solarzellen mit Heteroübergang 21 3 Entwicklung des Abscheidungsprozesses bis 140 MHz 23 3.1 Herstellung von dünnen Siliziumschichten 23 3.1.1 VHF-PECVD-Durchlaufanlage mit linearen Elektroden 24 3.1.2 F&E-Testanlage 25 3.2 Anpassung des Abscheidungssystems für sehr hohe Frequenzen 26 3.2.1 Temperaturregelung der HF Elektrode 26 3.2.2 Kompensation des Tiefpassverhaltens 28 3.2.3 Leistungseinkopplung 31 3.3 Homogenität der VHF-Abscheidung 32 3.4 Charakterisierung von dünnen Siliziumschichten und Solarzellen 34 3.4.1 Leitfähigkeitsmessung 34 3.4.2 Transmissionsmessungen im UV-VIS-NIR-Bereich 35 3.4.3 Fourier-Transform-Infrarotspektroskopie 37 3.4.4 Raman-Spektroskopie 38 3.4.5 Solarzellencharakterisierung 39 3.4.6 Messungen der effektiven Lebensdauer 42 3.5 Zusammenfassung der Ergebnisse 43 4 Hydrogeniertes amorphes Silizium im VHF-Bereich 45 4.1 Intrinsische a-Si:H Einzelschichten bis 140 MHz 45 4.1.1 Optische Eigenschaften 47 4.1.2 Strukturelle Eigenschaften 48 4.1.3 Elektrische Eigenschaften 51 4.2 a-Si:H-Solarzellen bis 140 MHz 52 4.2.1 Variation der Silankonzentration 53 4.2.2 Abscheiderateerhöhung durch Prozessleistung 56 4.3 Weitere Entwicklung der amorphen Silizium-Solarzellen 61 4.4 Zusammenfassung der Ergebnisse 62 5 Hydrogeniertes mikrokristallines Silizium im VHF-Bereich 65 5.1 μc-Si:H Schichten und Solarzellen – HPD-Regime 68 5.1.1 Einfluss des Prozessdruckes und der Silankonzentration bei hohen Gasflusswerten 69 5.1.2 Einfluss der Leistung bei hohen Gasflusswerten 72 5.2 μc-Si:H Schichten und Solarzellen – Frequenzerhöhung 74 5.2.1 μc-Si:H Schichteigenschaften – Vergleich 120 und 140 MHz 74 5.2.2 μc-Si:H Solarzellen – Vergleich 120 und 140 MHz 76 5.3 Weitere Entwicklung der μc-Si:H Solarzellen 78 5.4 Zusammenfassung der Ergebnisse 79 6 Passivierungsschichten für HIT-Solarzellen 81 6.1 Schichteigenschaften – Vergleich zwischen 13,56 und 140 MHz 81 6.2 H2-Plasma-Vorreinigung 84 6.3 Passivierungsschichten – Frequenzeinfluss 87 6.4 Zusammenfassung der Ergebnisse 88 7 Simulationsstudie 89 7.1 Ionenbeschussenergie 89 7.1.1 Modellübersicht – Ar-Plasma 90 7.1.2 Einfluss der Leistung und Betriebsfrequenz 91 7.2 Simulation des Ionenbeschusses 92 7.2.1 TRIM–Simulationssoftware 92 7.2.2 Ionenbeschuss auf die a-Si:H-Oberfläche 93 7.3 Solarzellen – Defekte in der i- Schicht 94 7.3.1 ASA–Simulationssoftware 95 7.3.2 Parameterset 99 7.3.3 Einfluss der Defektdichte auf Solarzelleneigenschaften 101 7.4 Zusammenfassung der Ergebnisse 102 8 Zusammenfassung und Ausblick 105 II. Abbildungsverzeichnis 111 III. Tabellenverzeichnis 117 IV. Literaturverzeichnis 119 V. Veröffentlichungen 129 VI. Lebenslauf 131 VII. Danksagung 133
74

Schaltungen zur Frequenzumsetzung für drahtlose Übertragungssysteme im Millimeterwellenbereich

Rieß, Vincent 14 May 2021 (has links)
Diese Arbeit beschreibt den Entwurf, die Analyse und die Verifikation von integrierten Schaltungen zur Frequenzumsetzung für drahtlose Übertragungssysteme im Millimeterwellenbereich. Bei der Beschreibung der zur Verfügung stehenden Halbleitertechnologien und der Aufbau- und Verbindungstechniken wird deutlich, dass parasitäre Widerstände, Kapazitäten und Induktivitäten sämtlicher Verbindungen Verluste und Reflexionen verursachen, die mit der Signalfrequenz ansteigen. Dies motiviert die Reduktion der Signalfrequenz zur Verringerung dieser Verluste, soweit wie dies in einem Millimeterwellensystem möglich ist. Neben den in drahtlosen Übertragungssystemen ohnehin erforderlichen Mischern zur Modulation und Demodulation werden in dieser Arbeit auch Frequenzmultiplizierer vorgestellt. Mit diesen Schaltungen ist es möglich, das hochfrequente Trägersignal direkt neben den Mischern zu erzeugen und mit möglichst kurzen Leitungen anzuschließen, sodass die parasitären Verluste dieser Verbindung sowie die Reflexionen minimal werden. Mit Ausnahme der Verbindungen zu den Antennen kann dadurch die Frequenz der restlichen extern anzuschließenden Signale, nämlich des zu übertragenden Basisbandsignals und des subharmonischen LO-Signals, wesentlich verringert werden, wodurch die Verluste insgesamt reduziert werden. In dieser Arbeit werden dafür zwei Frequenzverdoppler und ein Frequenzversechsfacher vorgestellt, die jeweils mit einer Eingangsfrequenz im Bereich um 30 GHz Ausgangssignale bei 60 GHz bzw. bei 180 GHz erzeugen. Diese drei Schaltungen wurden mit einem Schwerpunkt auf der Unterdrückung unerwünschter Harmonischer und einer gleichzeitig effizienten Erzeugung der gewünschten Harmonischen entworfen. Damit konnte der Stand der Technik für BiCMOS-Frequenzmultiplizierer mit einer Ausgangsfrequenz von bis zu 210 GHz verbessert werden. Sowohl hinsichtlich der absoluten DC-Leistung des Frequenzversechsfachers von lediglich 63 mW, als auch bezüglich der Effizienz (PAE) von 0,28 %, der Verstärkung von 10 dB und der Unterdrückung unerwünschter Harmonischer von bis zu 35 dB sind die erzielten Ergebnisse außerdem besser als von einigen Schaltungen aus leistungsfähigeren III-V-Halbleiterprozessen. Passend zur Mittenfrequenz von 180 GHz am Ausgang des Frequenzversechsfachers, die auch die Mittenfrequenz des IEEE G-Bands ist, werden außerdem integrierte Aufwärts- und Abwärtsmischer entwickelt, die auf der für Kommunikationssysteme vergleichsweise wenig beachteten Sechstor-Architektur basieren. Die Vorteile der Sechstor-Architektur wurden zuvor bereits bei niedrigeren Frequenzen sowohl mit integrierten als auch mit diskret aufgebauten Schaltungen demonstriert. Ein Ziel dieser Arbeit ist die darauf aufbauende Entwicklung und Untersuchung von integrierten I-Q-Mischern mit dieser Architektur für drahtlose Kommunikationssysteme bei 180 GHz in einem 130 nm-BiCMOS-Prozess. Dafür werden geeignete Detektoren und Reflektoren präsentiert, mit denen die Implementierung in diesem Frequenzbereich möglich ist. Mit den erzielten Ergebnissen konnte jeweils der Stand der Technik für integrierte Sechstor-Aufwärts- und -Abwärtsmischer verbessert werden: Im Fall der Sechstor-Aufwärtsmischer stellen die durchgeführten Messungen die erste Verifikation dieser Architektur im Millimeterwellenbereich dar. Auch im Fall der Abwärtsmischer ist die entworfene Schaltung die erste Realisierung bei einer Mittenfrequenz von über 120 GHz. Die erzielten Ergebnisse zeigen, dass die Sechstor-Architektur im Millimeterwellenbereich für die Anwendung in drahtlosen Übertragungssystemen geeignet ist. Hinsichtlich der HF-Eigenschaften sind die erzielten Ergebnisse vergleichbar mit oder besser als solche, die mit technologisch aufwendigeren und oftmals energieintensiveren Schalter-Mischern, wie z.B. den Gilbert-Mischern, erreicht werden. Darüber hinaus wird anhand von mathematischen Schaltungsanalysen gezeigt, dass sich diese Mischerarchitektur ebenfalls durch ihre gute analytische Modellierbarkeit auszeichnet. Selbst mit stark idealisierten und vereinfachten Modellen kann der Mischgewinn bei 180 GHz mit einer Abweichung zur Messung und zur Simulation von lediglich rund 5 dB berechnet werden.:Kurzfassung Abstract Symbolverzeichnis Vorveröffentlichungen 1. Einleitung 2. Fertigungsprozesse für Schaltungen im Millimeterwellenbereich 2.1. Halbleitertechnologien 2.2. Aufbau- und Verbindungstechnik 2.3. Reduktion von Verlusten mittels Frequenzumsetzung 3. Frequenzmultiplizierer 3.1. Frequenzverdoppler mit Polyphasenfilter 3.2. Frequenzverdoppler mit aktivem und passivem Balun 3.3. Frequenzversechsfacher 3.4. Anwendung in einem Millimeterwellensystem 4. Mischer 4.1. Sechstor-Interferometer 4.2. Sechstor-Abwärtsmischer 4.3. Sechstor-Aufwärtsmischer 5. Zusammenfassung und Ausblick A. Betragsberechnungen der auslaufenden Wellen des Sechstors B. Lösung der nichtlinearen Differenzialgleichung C. Differenzen der Quadrate und Kuben harmonischer Summen Literaturverzeichnis Danksagung / In this thesis the design, analysis and verification of integrated circuits for wireless communication systems operating at millimeter waves is presented. During a review of the available manufacturing processes for integrated circuits, printed circuit boards, and interconnects, problems associated with these techniques are identified. Parasitic elements, such as resistors, capacitors, and inductors introduce losses that increase with the signal frequency. This motivates the reduction of the signal frequency wherever possible, so as to reduce these frequency-dependent losses. To achieve this, millimeterwave up- and downconverting mixers, which are anyway required in wireless systems for the modulation and demodulation of an rf carrier signal, and frequency multipliers for generation of those carrier signals are presented in this thesis. With the frequency multipliers it is possible to generate the carrier signals as spatially close to the mixers as possible, reducing the required length of the connection and the losses and reflecions associated with it. Two frequency doublers and a frequency sixtupler were designed for the conversion of input signals at 30 GHz to output signals at 60 GHz and at 180 GHz, respectively. The designs are focused on an energy-efficient generation of the desired harmonic and a large suppression of other undesired harmonics. In this way, the demonstrated results for the frequency sixtupler at 180 GHz improve the state-of-the-art for both BiCMOS and III-V circuits in terms of power consumption, power added efficiency (PAE), conversion gain and harmonic suppression. With the output frequency at up to 210 GHz and with a dc power consumption of 63 mW, a conversion gain of 10 dB, a PAE of 0.28 %, and a harmonic suppression of 35 dB is reached. Matching the output frequency of the sixtupler, two quadrature mixers operating at 180 GHz are presented. They are based on the six-port technique, which offers some promising features at millimeter wave frequencies, but is still not very popular for the application in integrated communication systems. Some research has already been conducted on six-port receivers for radar and communication systems operating at lower frequencies, both as integrated circuits and on printed circuit boards. In the case of six-port downconversion mixers, competetive results with discrete III-V diodes and transistors on printed circuit boards were demonstrated, but very little research on integrated realizations has been published to date. One goal of this thesis is therefore to design integrated six-port mixers at 180 GHz and investigate this architecture for the quadrature up- and downconversion in communication systems. Suitable active detectors and reflectors are proposed to enable the implementation of the six-port technique at these frequencies. In this way, the first implementation of the six-port technique for the upconversion at millimeterwave frequencies is demonstrated. For the downconversion, the rf center frequency at 180 GHz is the highest among six-port implementations to date. The results in terms of rf performance compare well against state-of-the-art switching mixers, such as Gilbert cells. Moreover, the six-port architecture is found to be much simpler in terms of the circuit complexity and it enables the circuit analysis using only simple and idealistic models. With such models, the conversion gain at 180 GHz can be calculated with an error of only about 5 dB. In its minimal realization, a quadrature mixer with a very low dc power consumption can be designed. This makes the six-port technique increasingly attractive as the rf frequency is increased and switching mixers consume a higher dc and rf power.:Kurzfassung Abstract Symbolverzeichnis Vorveröffentlichungen 1. Einleitung 2. Fertigungsprozesse für Schaltungen im Millimeterwellenbereich 2.1. Halbleitertechnologien 2.2. Aufbau- und Verbindungstechnik 2.3. Reduktion von Verlusten mittels Frequenzumsetzung 3. Frequenzmultiplizierer 3.1. Frequenzverdoppler mit Polyphasenfilter 3.2. Frequenzverdoppler mit aktivem und passivem Balun 3.3. Frequenzversechsfacher 3.4. Anwendung in einem Millimeterwellensystem 4. Mischer 4.1. Sechstor-Interferometer 4.2. Sechstor-Abwärtsmischer 4.3. Sechstor-Aufwärtsmischer 5. Zusammenfassung und Ausblick A. Betragsberechnungen der auslaufenden Wellen des Sechstors B. Lösung der nichtlinearen Differenzialgleichung C. Differenzen der Quadrate und Kuben harmonischer Summen Literaturverzeichnis Danksagung
75

Vertical Gallium Nitride Power Devices: Fabrication and Characterisation

Hentschel, Rico 14 May 2021 (has links)
Efficient power conversion is essential to face the continuously increasing energy consumption of our society. GaN based vertical power field effect transistors provide excellent performance figures for power-conversion switches, due to their capability of handling high voltages and current densities with very low area consumption. This work focuses on a vertical trench gate metal oxide semiconductor field effect transistor (MOSFET) with conceptional advantages in a device fabrication preceded GaN epitaxy and enhancement mode characteristics. The functional layer stack comprises from the bottom an n+/n- drift/p body/n+ source GaN layer sequence. Special attention is paid to the Mg doping of the p-GaN body layer, which is a complex topic by itself. Hydrogen passivation of magnesium plays an essential role, since only the active (hydrogen-free) Mg concentration determines the threshold voltage of the MOSFET and the blocking capability of the body diode. Fabrication specific challenges of the concept are related to the complex integration, formation of ohmic contacts to the functional layers, the specific implementation and processing scheme of the gate trench module and the lateral edge termination. The maximum electric field, which was achieved in the pn- junction of the body diode of the MOSFET is estimated to be around 2.1 MV/cm. From double-sweep transfer measurements with relatively small hysteresis, steep subthreshold slope and a threshold voltage of 3 - 4 V a reasonably good Al2O3/GaN interface quality is indicated. In the conductive state a channel mobility of around 80 - 100 cm2/Vs is estimated. This obtained value is comparable to device with additional overgrowth of the channel. Further enhancement of the OFF-state and ON-state characteristics is expected for optimization of the device termination and the high-k/GaN interface of the vertical trench gate, respectively. From the obtained results and dependencies key figures of an area efficient and competitive device design with thick drift layer is extrapolated. Finally, an outlook is given and advancement possibilities as well as technological limits are discussed.:1 Motivation and boundary conditions 1.1 A comparison of competitive semiconductor materials 1.2 Vertical GaN device concepts 1.3 Target application for power switches 2 The vertical GaN MOSFET concept 2.1 Incomplete ionization of dopants 2.2 The pseudo-vertical approach 2.3 Considerations for the device OFF-state 2.3.1 The pn-junction in reverse operation 2.3.2 The gate trench MIS-structure in OFF-state 2.3.3 Dimensional constraints and field plates 2.4 Static ON-state and switching considerations 2.4.1 The pn-junction in forward operation 2.4.2 Resistance contributions 2.4.3 Device model and channel mobility 2.4.4 Threshold voltage and subthreshold slope 2.4.5 Interface and dielectric trap states in wide band semiconductors 2.4.6 The body bias effect 3 Fabrication and characterisation 3.1 Growth methods for GaN substrates and layers 3.2 Substrates and the desired starting material 3.2.1 Physical and micro-structural characterisation 3.2.2 Dislocations and impurities 3.3 Pseudo- and true-vertical MOSFET fabrication 3.3.1 Processing routes 3.3.2 Inductively-coupled plasma etching 3.3.3 Process flow modification 3.4 Electrical characterisation, structures and process control 3.4.1 Current voltage characterisation 3.4.2 C(V) measurements and charge carrier profiling 3.4.3 Cooperative characterisation structures 4 Properties of the functional layers 4.1 Morphology of the MOVPE grown layers 4.2 Hydrogen out-diffusion treatment 4.3 Morphology of the n+-source layer grown by MBE 4.4 N-type doping of the functional layers 4.5 P-type GaN by magnesium doping 4.6 Structural properties after the etching and gate module formation 4.7 Electrical layer characterization 4.7.1 Gate dielectric and interface evaluation 5 Pseudo- and true vertical device operation 5.1 Influences of the metal-line sheet resistance 5.2 Formation and characterisation of ohmic contacts 5.2.1 Ohmic contacts to n-type GaN 5.2.2 Ohmic contacts to p-GaN 5.3 The pn- body diode 5.4 MOSFET operation 5.4.1 ON-state and turn-ON operation 5.4.2 The body bias effect on the threshold voltage 5.4.3 Device OFF-state 6 Summary and conclusion 6.1 Device performance 6.2 Current limits of the vertical device technology 6.3 Possibilities for advancements Bibliography A Appendix A.1 Deduction: Forward diffusion current of the pn-diode A.2 Deduction: Operation regions in the EKV model Figures Tables Abbreviations Symbols Postamble and Acknowledgement
76

Beiträge zur additiven Herstellung biokompatibler flexibler und dehnbarer Elektronik

Schubert, Martin 13 April 2021 (has links)
Die Etablierung der Telemedizin stellt neue Herausforderungen an die Aufbau- und Verbindungstechnik der Elektronik. Neue medizintechnische Anwendungen für die breite Gesellschaft erfordern biokompatible, flexible und dehnbare Elektronik, die zugleich kostengünstig und individuell hergestellt werden kann. Einen vielversprechenden Ansatz bietet die Verwendung additiver Herstellungsverfahren. Gegenstand dieser Arbeit ist die Materialauswahl für flexible und dehnbare Mikrosysteme vor dem Hintergrund der Anforderungen für zukünftige biomedizinische Anwendungen und unter Verwendung ausschließlich additiver Verfahren. Der grundlegende Aufbau gedruckter Elektronik, bestehend aus Leiterzügen verschiedener Nanopartikeltinten und polymeren Substraten, wird hinsichtlich biologischer und mechanischer Eigenschaften untersucht. Diese Charakterisierung beinhaltet die Evaluation der Zytotoxizität, Haftfestigkeit, Biegebelastung und Dehnungsbelastung der Materialkombinationen. Im Fokus steht der Inkjetdruck von Platintinte auf flexiblen Polyimid- und dehnbaren Polyurethansubstraten. Aufgrund der Inkompatibilität zwischen der erforderlichen Sintertemperatur der Platintinte und der Erweichungstemperatur des Polyurethans, wird das photonische Sintern untersucht. Dafür kommen Lasersintern und Blitzlampensintern zum Einsatz. Die Platintinte zeigt ausgezeichnete Eigenschaften im Zytotoxizitätstest durch 98 %ige Zellvitalität im Vergleich zur biokompatiblen Referenz. Die bestimmten Haftfestigkeiten liegen zwischen 0,5N/mm2 und 2,5N/mm2 und entsprechen damit aktuellen Literaturwerten. Weiterhin zeigt das Ergebnis von Biegetests vielversprechende flexible Eigenschaften. Der Widerstand nach 180 000 Biegezyklen erhöht sich bei einem Biegeradius von 5mm um maximal 9,5% und bei 2mm um maximal 42 %. Die Dehnungstests mit Horseshoestrukturen aus Silbertinte zeigen ca. 400 Dehnungszyklen bei 10% Dehnung und ca. 400 Zyklen bei 20% Dehnung bis zur vollständiger Leiterzugunterbrechung. Zwei Demonstratoren validieren das Potential der ausschließlichen Nutzung von additiven Prozessen zur Herstellung biomedizinischer Mikrosysteme. Der erste Demonstrator ist eine Hautelektrode, welche sich durch temporären Elektroden-Hautkontakt zur Hautleitwertmessung eignet. Der zweite Demonstrator beinhaltet eine miniaturisierte, gedruckte Interdigitalelektrode, die durch die Anwendung von Nanosekundenimpulsen in der Lage ist, Zellen zu manipulieren. Die Erkenntnisse aus dieser Arbeit zeigen das große Potential der Nutzung additiver Prozesse für die Herstellung von Medizinprodukten.
77

Next Generation Header Compression

Tömösközi, Mate 26 April 2021 (has links)
Header compression is one of the technologies, which enables packet-switched computer networks to operate with higher efficiency even if the underlying physical link is limited. Since its inception, the compression was meant to improve dial-up Telnet connections, and has evolved into a complex multi-faceted compression library, which has been integrated into the third and fourth generation of cellular networks, among others. Beyond the promised benefit of decreased bandwidth usage, header compression has shown that it is capable of improving the quality of already existing services, such as real-time audio calls, and is a developing hot topic to this day, realising, for example, Internet Protocol (IP) version 6 support on resource constrained low-power devices. However, header compression is ill equipped to handle the stringent requirements and challenges, which are posed by the coming fifth generation of wireless and cellular networks (5G) and its applications. Even though it can be considered as an already well developed area of computer networks that can compress protocol headers with unparalleled efficiency, header compression is still operating under some assumptions and restrictions that could deny its employment outside of cellular Voice over IP transmissions to certain degrees. Albeit some improvements in the latency domain could be achieved with its help, the application of header compression in both largely interconnected networks and very dynamic ones – such as the wireless mesh and vehicular networks – is not yet assured, as the topic, in this perspective, is still relatively new and unexplored. The main goal of my theses is the presentation and evaluation of novel ideas, which support the application of header compression concepts for the future wireless use-cases, as it holds alluring benefits for the coming network generations, if applied correctly. The dissertation provides a detailed treatment of my contribution in the specific research areas of header compression and network coding, which encompass novel proposals for their enhancement in 5G uses, such as broadcastability and online optimisation, as well as their subsequent analysis from various perspectives, including the achievable compression gains, delay reduction, transmission efficiency, and energy consumption, to name a few. Besides the focus on enabling header compression in 5G, the development of traffic-agnostic and various network-coded compression concepts are also introduced to attain the benefits of both techniques at the same time, namely, reduced bandwidth usage and high reliability in latency sensitive heterogeneous and error prone mesh networks. The generalisation of compression is achieved by the employment of various machine learning concepts, which could approximate the compression characteristics of any packet-based communication flow, while network coding facilitates the exploitation of the low-latency benefits of error correcting codes in heavily interconnected wireless networks.
78

Microwave Photonic Applications - From Chip Level to System Level

Neumann, Niels 06 May 2021 (has links)
Die Vermischung von Mikrowellen- und optischen Technologien – Mikrowellenphotonik – ist ein neu aufkommendes Feld mit hohem Potential. Durch die Nutzung der Vorzüge beider Welten hat die Mikrowellenphotonik viele Anwendungsfälle und ist gerade erst am Beginn ihrer Erfolgsgeschichte. Der Weg für neue Konzepte, neue Komponenten und neue Anwendungen wird dadurch geebnet, dass ein höherer Grad an Integration sowie neue Technologien wie Silicon Photonics verfügbar sind. In diesem Werk werden zuerst die notwendigen grundlegenden Basiskomponenten – optische Quelle, elektro-optische Wandlung, Übertragungsmedium und opto-elektrische Wandlung – eingeführt. Mithilfe spezifischer Anwendungsbeispiele, die von Chipebene bis hin zur Systemebene reichen, wird der elektrooptische Codesign-Prozess veranschaulicht. Schließlich werden zukünftige Ausrichtungen wie die Unterstützung von elektrischen Trägern im Millimeterwellen- und THz-Bereich sowie Realisierungsoptionen in integrierter Optik und Nanophotonik diskutiert. / The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed.
79

Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

Nimr, Ahmad 08 July 2021 (has links)
The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future works
80

A Fast Switchable and Band-Tunable 5-7.5GHz LNA in 45nm CMOS SOI Technology for Multi-Standard Wake-up Radios

Ma, Rui, Kreißig, Martin, Ellinger, Frank 20 August 2019 (has links)
This work presents design and full implementation of a fast switchable and band-tunable 5 - 7.5 GHz low noise amplifier (LNA) in a 45nm CMOS SOI technology. The target application are wake-up receivers that employ aggressive duty cycling. Based on a cascode topology, the LNA utilizes a transformer for its 50 input matching as well as a balun with a capacitor bank to realize 8 digitally selectable bands. According to measurement results, the fabricated LNA exhibits a voltage gain of 18 - 21 dB while drawing a current of merely 2.2mA from a 1V supply. At all the 8 bands from 5 to 7.5 GHz, the input reflection coefficient lies below -8 dB, and the noise figure ranges from 7.8 to 6.2 dB. The LNA is able to settle in less than 9.5 ns

Page generated in 0.035 seconds