• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 41
  • 15
  • 10
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 35
  • 32
  • 28
  • 22
  • 21
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aristotelische Naturphilosophie und christliche Kabbalah im Werk des Paulus Ritius /

Roling, Bernd, January 2007 (has links)
Texte remanié de: Dissertation--Philosophische Fakultät--Münster--Westfälische Wilhelms-Universität, 2002. / Bibliogr. p. 549-635.
12

A geometria das mÃtricas tipo-Einstein / The geometric of like-Einstein metrics

Ernani de Sousa Ribeiro Junior 29 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas. / The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
13

Structures kählériennes sur T*G dont la forme symplectique sous-jacente est la forme standard / Kaehler structures on T*G having as underlying symplectic structure the standard one

Leicht, Karl 18 November 2013 (has links)
Soit G un groupe de Lie connexe. On montre qu'une structure complexe sur l'espace total TG du fibré tangent de G, invariante à gauche, et telle qu'une G-orbite quelconque par rapport à translation à gauche soit totalement réelle, est induite par une immersion lisse de TG dans le complexifié de G. Pour G compact et connexe, on caractérise ensuite les structures complexes invariantes à gauche et également les structures complexes biinvariantes sur l'espace total T*G du fibré cotangent de G qui, combinées avec la structure symplectique tautologique, munissent T*G d'une structure kählérienne. On étudie enfin les courbures de Ricci de ces structures kählériennes. / Let G be a connected Lie group. We show that every complex structure on the total space TG of the tangent bundle of G which is left invariant and such that an orbit with respect to the left translation action is totally real, is induced by a smooth immersion of TG into the complexifixed group of G. For G compact and connected, we also characterize the right invariant complex structures and the biinvariant complex structures on the total space T*G of the cotangent bundle of G which, combined with the tautological symplectic structure, endow T*G with a Kaehler structure. Finally, we study the Ricci curvature of these Kaehler structures.
14

Sólitons de Ricci com estrutura de Produto Deformado

Freitas Filho, Antonio Airton, 92-98191-1599 17 July 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-28T14:26:24Z No. of bitstreams: 2 Tese - Antonio Airton Freitas Filho.pdf: 926380 bytes, checksum: 5e63274b335407ca1fc93234877341d3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-28T14:26:51Z (GMT) No. of bitstreams: 2 Tese - Antonio Airton Freitas Filho.pdf: 926380 bytes, checksum: 5e63274b335407ca1fc93234877341d3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-08-28T14:27:15Z (GMT) No. of bitstreams: 2 Tese - Antonio Airton Freitas Filho.pdf: 926380 bytes, checksum: 5e63274b335407ca1fc93234877341d3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-08-28T14:27:15Z (GMT). No. of bitstreams: 2 Tese - Antonio Airton Freitas Filho.pdf: 926380 bytes, checksum: 5e63274b335407ca1fc93234877341d3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-07-17 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / In this work we show that either expanding or steady gradient Ricci soliton warped product, whose warping function reaches both maximum and minimum, must be a Riemannian product. Firstly, we present a necessary and sufficient condition for cons-tructing a gradient Ricci soliton warped product. As an application, we give a new class of expanding gradient Ricci soliton warped products having as fiber an Einstein manifold with non-positive scalar curvature. Secondly, we discuss some restrictions to this latter construction, and especially in the case when the base of the warped product is compact. Thirdly, we introduce the modified Ricci solitons as a new class of Einstein type metrics that contains both Ricci solitons and m-quasi-Einstein metrics. This class is closely related to the construction of the Ricci solitons that are realised as warped products. On the other hand, a modified Ricci soliton appears as part of a self-similar solution of the modified Harmonic-Ricci flow which results in a new characterisation of m-quasi-Einstein metrics. Finally, we study a modified almost Ricci soliton. In the spirit of Lichnerowicz and Obata theorems, we prove that in the class of compact Riemannian manifolds with constant scalar curvature the standard sphere with a structure of gradi-ent modified almost Ricci soliton is rigid under some specific geometric condition. An existence condition for constructing an almost Ricci soliton warped product as well as an example of expanding non-gradient Ricci soliton warped product are presented. / Nesta tese mostramos que um sóliton de Ricci gradiente com estrutura de produto deformado expansivo ou estacionário, cuja função deformadora atinge um máximo e um mínimo, deve ser um produto Riemanniano usual. Encontramos uma condição ne-cessária e suficiente para construir sólitons de Ricci gradientes com estrutura de produto deformado. Como aplicação, apresentamos uma nova classe de sólitons de Ricci gradien-tes com estrutura de produto deformado expansivo, tendo como fibra uma variedade de Einstein de curvatura escalar não-positiva. Também discutimos algumas obstruções para esta construção, especialmente quando a base do produto deformado é compacta. Em seguida introduzimos os sólitons de Ricci modificados como uma classe de métricas tipo-Einstein que contém os sólitons de Ricci e as métricas m-quasi-Einstein. Por um lado, tal classe está relacionada à construção de sólitons de Ricci realizados como produtos deformados, por outro lado, um sóliton de Ricci modificado compõe uma solução auto-similar do fluxo Ricci-Harmônico modificado, resultando em uma nova caracterização para as métricas m-quasi-Einstein. Além disso, definimos os quase sólitons de Ricci modificados. Em particular, na direção dos teoremas de Lichnerowicz e Obsta, prova-mos que, na classe de variedades compactas com curvatura escalar constante, a esfera euclidiana tem estrutura bem determinada de quase sóliton de Ricci gradiente modifi-cado, sendo rígida, desde que se tenha uma condição geométrica específica. Também encontramos uma condição de existência para a construção de quase sólitons de Ricci com estrutura de produto deformado e, finalmente, exibimos um exemplo de sóliton de Ricci não-gradiente com estrutura de produto deformado expansivo.
15

Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. / Short-time existence theorems for the Ricci flow of non-complete, non-collapsed manifold with curvature bounded from below.

Hochard, Raphaël 22 January 2019 (has links)
Le flot de Ricci est une équation aux dérivées partielles qui régit l’évolution d’une métrique riemannienne dépendant d’un paramètre de temps sur une variété différentielle. D’abord introduit et étudié par R. Hamilton, il est à l’origine de la solution de la conjecture de géométrisation des variétés compactes de dimension 3 par G. Perelman en 2001. La théorie classique concernant l’existence en temps court des solutions, due à Hamilton et à Shi, garantit (en dimension quelconque) l’existence d’un flot soit sur une variété compacte, soit lorsque la métrique initiale est complète avec une borne sur la norme du tenseur de courbure. En l’absence de cette borne, on conjecture qu’on peut trouver, à partir de la dimension 3, des données initiales pour lesquelles il n’existe pas de solution. Dans cette thèse, on démontre des théorèmes d’existence en temps court du flot sous des hypothèses plus faibles qu’une borne sur la norme du tenseur de courbure. Pour cela, on introduit une construction générale qui, pour une métrique riemannienne g quelconque sur une variété M, pas nécessairement complète, permet de produire une solution de l’équation du flot sur un domaine ouvert D de l’espace-temps M * [0,T] qui contient la tranche de temps initiale, avec g pour donnée initiale. On montre ensuite que sous des hypothèses adaptées sur la métrique g, on contrôle la forme du domaine D. En particulier, lorsque la métrique g est complète, D contient un ensemble de la forme M * [0,t], avec t>0, ce qui revient à dire qu’il existe un flot au sens classique dont la donnée initiale est g. Les « hypothèses adaptées » qui conduisent à des théorèmes d’existence sont de trois types. Dans tout les cas, on suppose une minoration uniforme du volume des boules de rayon au plus 1, à quoi on ajoute : a) en dimension 3, une minoration du tenseur de Ricci, b) en dimension n, une minoration d’une notion de courbure dite « courbure isotrope I » ou bien c) en dimension n, une borne sur la norme du tenseur de Ricci et une hypothèse qui garantit la proximité au sens métrique des boules de rayon au plus 1 avec une boule de même rayon dans un espace métrique obtenu comme le produit cartésien d’un espace de dimension 3 et d’un facteur euclidien de dimension n-3. De plus, avec ces résultats d’existence viennent des estimations sur les propriétés de régularisation du flot quantifiées en fonction des hypothèses sur la donnée initiale. La possibilité ainsi offerte de régulariser, globalement ou localement, pour un temps et avec des estimations quantifiés, une métrique initiale a des conséquence sur les espaces métriques singuliers obtenus comme limites, pour la distance de Gromov-Hausdorff, de suites de variétés satisfaisant uniformément aux conditions a), b) ou c). En effet, des théorèmes de compacité classiques pour le flot de Ricci permettent d’extraire un flot limite, étant donnée une suite de métriques initiales satisfaisant uniformément à ces hypothèses, et possédant donc toutes un flot pour un temps contrôlé. Lorsque les métriques en question approchent, pour la topologie de Gromov-Hausdorff, un espace singulier, cette solution limite s’interprète comme un flot régularisant l’espace singulier en question, et son existence contraint la topologie de cet espace singulier. / The Ricci Flow is a partial differential equation governing the evolution of a Riemannian metric depending on a time parameter t on a differential manifold. It was first introduced and studied by R. Hamilton, and eventually led to the solution of the Geometrization conjecture for closed three-dimensional manifolds by G. Perelman in 2001. The classical short-time existence theory for the Ricci Flow, due to Hamilton and Shi, asserts, in any dimension, the existence of a flow starting from any initial metric when the underlying manifold in compact, or for any complete initial metric with a bound on the norm of the curvature tensor otherwise. In the absence of such a bound, though, the conjecture is that starting from dimension 3 one can find such initial data for which there is no solution. In this thesis, we prove short-time existence theorems under hypotheses weaker than a bound on the norm of the curvature tensor. To do this, we introduce a general construction which, for any Riemannian metric g (not necessarily complete) on a manifold M, allows us to produce a solution to the equation of the flow on an open domain D of the space-time M * [0,T] which contains the initial time slice, with g as an initial datum. We proceed to show that under suitable hypotheses on g, one can control the shape of the domain D, so that in particular, D contains a subset of the form M * [0,t] with t>0 if g is complete. By « suitable hypothesis », we mean one of the following. In any case, we assume a lower bound on the volume of balls of radius at most 1, plus a) in dimension 3, a lower bound on the Ricci tensor, b) in dimension n, a lower bound on the so-called « isotropic curvature I » or c) in dimension n, a bound on the norm of the Ricci tensor, as well as a hypothesis which garanties the metric proximity of every ball of radius at most $1$ with a ball of the same radius in a metric product between a three-dimensional metric space and a $n-3$ dimensional Euclidian factor. Moreover, with these existence results come estimates on the existence time and regularization properties of the flow, quantified in term of the hypotheses on the initial data. The possibility to regularize metrics, locally or globally, with such estimates has consequences in terms of the metric spaces obtained as limits, in the Gromov-Hausdorff topology, of sequences of manifolds uniformly satisfying a), b) or c). Indeed, the classical compactness theorems for the Ricci Flow allow for the extraction of a limit flow for any sequence of initial metrics uniformly satisfying the hypotheses and thus possessing a flow for a controlled amount of time. In the case when these metrics approach a singular space in the Gromov-Hausdorff topology, such a limit solution can be interpreted as a flow regularizing the singular limit space, the existence of which puts constraints on the topology of this space.
16

Flots de Monge-Ampère complexes sur les variétés hermitiennes compactes / Complex Monge-Ampère flows on compact Hermitian manifolds

Tô, Tat Dat 29 June 2018 (has links)
Dans cette thèse nous nous intéressons aux flots de Monge-Ampère complexes, à leurs généralisations et à leurs applications géométriques sur les variétés hermitiennes compactes. Dans les deux premiers chapitres, nous prouvons qu'un flot de Monge-Ampère complexe sur une variété hermitienne compacte peut être exécuté à partir d'une condition initiale arbitraire avec un nombre Lelong nul en tous points. En utilisant cette propriété, nous con- firmons une conjecture de Tosatti-Weinkove: le flot de Chern-Ricci effectue une contraction chirurgicale canonique. Enfin, nous étudions une généralisation du flot de Chern-Ricci sur des variétés hermitiennes compactes, le flot de Chern-Ricci tordu. Cette partie a donné lieu à deux publications indépendantes. Dans le troisième chapitre, une notion de C -sous-solution parabolique est introduite pour les équations paraboliques, étendant la théorie des C -sous-solutions développée récem- ment par B. Guan et plus spécifiquement G. Székelyhidi pour les équations elliptiques. La théorie parabolique qui en résulte fournit une approche unifiée et pratique pour l'étude de nombreux flots géométriques. Il s'agit ici d'une collaboration avec Duong H. Phong (Université Columbia ) Dans le quatrième chapitre, une approche de viscosité est introduite pour le problème de Dirichlet associé aux équations complexes de type hessienne sur les domaines de Cn. Les arguments sont modélisés sur la théorie des solutions de viscosité pour les équations réelles de type hessienne développées par Trudinger. En conséquence, nous résolvons le problème de Dirichlet pour les équations de quotient de hessiennes et lagrangiennes spéciales. Nous établissons également des résultats de régularité de base pour les solutions. Il s'agit ici d'une collaboration avec Sl-awomir Dinew (Université Jagellonne) et Hoang-Son Do (Institut de Mathématiques de Hanoi). / In this thesis we study the complex Monge-Ampère flows, and their generalizations and geometric applications on compact Hermitian manifods. In the first two chapters, we prove that a general complex Monge-Ampère flow on a compact Hermitian manifold can be run from an arbitrary initial condition with zero Lelong number at all points. Using this property, we confirm a conjecture of Tosatti- Weinkove: the Chern-Ricci flow performs a canonical surgical contraction. Finally, we study a generalization of the Chern-Ricci flow on compact Hermitian manifolds, namely the twisted Chern-Ricci flow. This part gave rise to two independent publications. In the third chapter, a notion of parabolic C -subsolution is introduced for parabolic non-linear equations, extending the theory of C -subsolutions recently developed by B. Guan and more specifically G. Székelyhidi for elliptic equations. The resulting parabolic theory provides a convenient unified approach for the study of many geometric flows. This part is a joint work with Duong H. Phong (Columbia University) In the fourth chapter, a viscosity approach is introduced for the Dirichlet problem associated to complex Hessian type equations on domains in Cn. The arguments are modelled on the theory of viscosity solutions for real Hessian type equations developed by Trudinger. As consequence we solve the Dirichlet problem for the Hessian quotient and special Lagrangian equations. We also establish basic regularity results for the solutions. This part is a joint work with Sl-awomir Dinew (Jagiellonian University) and Hoang-Son Do (Hanoi Institute of Mathematics).
17

Long time behaviors of Ricci flow and applications. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In this thesis, we will first extend the pseudo-locality of the Ricci flow on compact Riemannian manifolds discovered by Perelman to complete noncompact Riemannian manifolds. Then, we will apply it to study the long time existence of the Kahler-Ricci flow on complete noncompact Kahler manifolds with reasonable geometric assumptions. Finally, we will give some examples of complete flat Kahler metrics on the complex projective space with some divisor deleted. / by Yu, Chengjie. / Advisers: Yau-Heng Wan; Luen-Fai Tam. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3552. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 113-116). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
18

On the blow-up of four-dimensional Ricci flow singularities

Máximo Alexandrino Nogueira, Davi 23 October 2013 (has links)
In 2002, Feldman, Ilmanen, and Knopf constructed the first example of a non-trivial (i.e. non-constant curvature) complete non-compact shrinking soliton, and conjectured that it models a Ricci flow singularity forming on a closed four-manifold. In this thesis, we confirm their conjecture and, as a consequence, show that limits of blow-ups of Ricci flow singularities on closed four-dimensional manifolds do not necessarily have non-negative Ricci curvature. / text
19

Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces

Wilkes, Jason Unknown Date
No description available.
20

Theological conflicts between western missionaries and Chinese intellectuals in the sixteenth and seventeenth centuries

Liu, Yinghua. January 1900 (has links)
Thesis (Th. M.)--Calvin Theological Seminary, 2003. / Abstract. Includes bibliographical references (leaves 94-101).

Page generated in 0.4292 seconds