341 |
Dynamic Maze Puzzle Navigation Using Deep Reinforcement LearningChiu, Luisa Shu Yi 01 September 2024 (has links) (PDF)
The implementation of deep reinforcement learning in mobile robotics offers a great solution for the development of autonomous mobile robots to efficiently complete tasks and transport objects. Reinforcement learning continues to show impressive potential in robotics applications through self-learning and biological plausibility. Despite its advancements, challenges remain in applying these machine learning techniques in dynamic environments. This thesis explores the performance of Deep Q-Networks (DQN), using images as an input, for mobile robot navigation in dynamic maze puzzles and aims to contribute to advancements in deep reinforcement learning applications for simulated and real-life robotic systems. This project is a step towards implementation in a hardware-based system. The proposed approach uses a DQN algorithm with experience replay and an epsilon-greedy annealing schedule. Experiments are conducted to train DQN agents in static and dynamic maze environments, and various reward functions and training strategies are explored to optimize learning outcomes. In this context, the dynamic aspect involves training the agent on fixed mazes and then testing its performance on modified mazes, where obstacles like walls alter previously optimal paths to the goal. In game play, the agent achieved a 100\% win rate in both 4x4 and 10x10 static mazes, successfully making it to the goal regardless of slip conditions. The number of rewards obtained during the game-play episodes indicates that the agent took the optimal path in all 100 episodes of the 4x4 maze without the slip condition, whereas it took the shortest, most optimal path in 99 out of 100 episodes in the 4x4 maze with the slip condition. Compared to the 4x4 maze, the agent more frequently chose sub-optimal paths in the larger 10x10 maze, as indicated by the amount of times the agent maximized rewards obtained. In the 10x10 static maze game-play, the agent took the optimal path in 96 out of 100 episodes for the no slip condition, while it took the shortest path in 93 out of 100 episodes for the slip condition. In the dynamic maze experiment, the agent successfully solved 7 out of 8 mazes with a 100\% win rate in both original and modified maze environments. The results indicate that adequate exploration, well-designed reward functions, and diverse training data significantly impacted both training performance and game play outcomes. The findings suggest that DQN approaches are plausible solutions to stochastic outcomes, but expanding upon the proposed method and more research is needed to improve this methodology. This study highlights the need for further efforts in improving deep reinforcement learning applications in dynamic environments.
|
342 |
Real-Time Resource Optimization for Wireless NetworksHuang, Yan 11 January 2021 (has links)
Resource allocation in modern wireless networks is constrained by increasingly stringent real-time requirements. Such real-time requirements typically come from, among others, the short coherence time on a wireless channel, the small time resolution for resource allocation in OFDM-based radio frame structure, or the low-latency requirements from delay-sensitive applications. An optimal resource allocation solution is useful only if it can be determined and applied to the network entities within its expected time. For today's wireless networks such as 5G NR, such expected time (or real-time requirement) can be as low as 1 ms or even 100 μs. Most of the existing resource optimization solutions to wireless networks do not explicitly take real-time requirement as a constraint when developing solutions. In fact, the mainstream of research works relies on the asymptotic complexity analysis for designing solution algorithms. Asymptotic complexity analysis is only concerned with the growth of its computational complexity as the input size increases (as in the big-O notation). It cannot capture the real-time requirement that is measured in wall-clock time. As a result, existing approaches such as exact or approximate optimization techniques from operations research are usually not useful in wireless networks in the field. Similarly, many problem-specific heuristic solutions with polynomial-time asymptotic complexities may suffer from a similar fate, if their complexities are not tested in actual wall-clock time.
To address the limitations of existing approaches, this dissertation presents novel real- time solution designs to two types of optimization problems in wireless networks: i) problems that have closed-form mathematical models, and ii) problems that cannot be modeled in closed-form. For the first type of problems, we propose a novel approach that consists of (i) problem decomposition, which breaks an original optimization problem into a large number of small and independent sub-problems, (ii) search intensification, which identifies the most promising problem sub-space and selects a small set of sub-problems to match the available GPU processing cores, and (iii) GPU-based large-scale parallel processing, which solves the selected sub-problems in parallel and finds a near-optimal solution to the original problem. The efficacy of this approach has been illustrated by our solutions to the following two problems.
• Real-Time Scheduling to Achieve Fair LTE/Wi-Fi Coexistence: We investigate a resource optimization problem for the fair coexistence between LTE and Wi-Fi in the unlicensed spectrum. The real-time requirement for finding the optimal channel division and LTE resource allocation solution is on 1 ms time scale. This problem involves the optimal division of transmission time for LTE and Wi-Fi across multi- ple unlicensed bands, and the resource allocation among LTE users within the LTE's "ON" periods. We formulate this optimization problem as a mixed-integer linear pro- gram and prove its NP-hardness. Then by exploiting the unique problem structure, we propose a real-time solution design that is based on problem decomposition and GPU-based parallel processing techniques. Results from an implementation on the NVIDIA GPU/CUDA platform demonstrate that the proposed solution can achieve near-optimal objective and meet the 1 ms timing requirement in 4G LTE.
• An Ultrafast GPU-based Proportional Fair Scheduler for 5G NR: We study the popular proportional-fair (PF) scheduling problem in a 5G NR environment. The real-time requirement for determining the optimal (with respect to the PF objective) resource allocation and MCS selection solution is 125 μs (under 5G numerology 3). In this problem, we need to allocate frequency-time resource blocks on an operating channel and assign modulation and coding scheme (MCS) for each active user in the cell. We present GPF+ — a GPU based real-time PF scheduler. With GPF+, the original PF optimization problem is decomposed into a large number of small and in- dependent sub-problems. We then employ a cross-entropy based search intensification technique to identify the most promising problem sub-space and select a small set of sub-problems to fit into a GPU. After solving the selected sub-problems in parallel using GPU cores, we find the best sub-problem solution and use it as the final scheduling solution. Evaluation results show that GPF+ is able to provide near-optimal PF performance in a 5G cell while meeting the 125 μs real-time requirement.
For the second type of problems, where there is no closed-form mathematical formulation, we propose to employ model-free deep learning (DL) or deep reinforcement learning (DRL) techniques along with judicious consideration of timing requirement throughout the design. Under DL/DRL, we employ deep function approximators (neural networks) to learn the unknown objective function of an optimization problem, approximate an optimal algorithm to find resource allocation solutions, or discover important mapping functions related to the resource optimization. To meet the real-time requirement, we propose to augment DL or DRL methods with optimization techniques at the input or output of the deep function approximators to reduce their complexities and computational time. Under this approach, we study the following two problems:
• A DRL-based Approach to Dynamic eMBB/URLLC Multiplexing in 5G NR: We study the problem of dynamic multiplexing of eMBB and URLLC on the same channel through preemptive resource puncturing. The real-time requirement for determining the optimal URLLC puncturing solution is 1 ms (under 5G numerology 0). A major challenge in solving this problem is that it cannot be modeled using closed-form mathematical expressions. To address this issue, we develop a model-free DRL approach which employs a deep neural network to learn an optimal algorithm to allocate the URLLC puncturing over the operating channel, with the objective of minimizing the adverse impact from URLLC traffic on eMBB. Our contributions include a novel learning method that exploits the intrinsic properties of the URLLC puncturing optimization problem to achieve a fast and stable learning convergence, and a mechanism to ensure feasibility of the deep neural network's output puncturing solution. Experimental results demonstrate that our DRL-based solution significantly outperforms state-of-the-art algorithms proposed in the literature and meets the 1 ms real-time requirement for dynamic multiplexing.
• A DL-based Link Adaptation for eMBB/URLLC Multiplexing in 5G NR: We investigate MCS selection for eMBB traffic under the impact of URLLC preemptive puncturing. The real-time requirement for determining the optimal MCSs for all eMBB transmissions scheduled in a transmission interval is 125 μs (under 5G numerology 3). The objective is to have eMBB meet a given block-error rate (BLER) target under the adverse impact of URLLC puncturing. Since this problem cannot be mathematically modeled in closed-form, we proposed a DL-based solution design that uses a deep neural network to learn and predict the BLERs of a transmission under each MCS level. Then based on the BLER predictions, an optimal MCS can be found for each transmission that can achieve the BLER target. To meet the 5G real-time requirement, we implement this design through a hybrid CPU and GPU architecture to minimize the execution time. Extensive experimental results show that our design can select optimal MCS under the impact of preemptive puncturing and meet the 125 μs timing requirement. / Doctor of Philosophy / In modern wireless networks such as 4G LTE and 5G NR, the optimal allocation of radio resources must be performed within a real-time requirement of 1 ms or even 100 μs time scale. Such a real-time requirement comes from the physical properties of wireless channels, the short time resolution for resource allocation defined in the wireless communication standards, and the low-latency requirement from delay-sensitive applications.
Real-time requirement, although necessary for wireless networks in the field, has hardly been considered as a key constraint for solution design in the research community. Existing solutions in the literature mostly consider theoretical computational complexities, rather than actual computation time as measured by wall clock.
To address the limitations of existing approaches, this dissertation presents real-time solution designs to two types of optimization problems in wireless networks: i) problems that have mathematical models, and ii) problems that cannot be modeled mathematically. For the first type of problems, we propose a novel approach that consists of (i) problem decomposition, (ii) search intensification, and (iii) GPU-based large-scale parallel processing techniques. The efficacy of this approach has been illustrated by our solutions to the following two problems.
• Real-Time Scheduling to Achieve Fair LTE/Wi-Fi Coexistence: We investigate a resource optimization problem for the fair coexistence between LTE and Wi-Fi users in the same (unlicensed) spectrum. The real-time requirement for finding the optimal LTE resource allocation solution is on 1 ms time scale.
• An Ultrafast GPU-based Proportional Fair Scheduler for 5G NR: We study the popular proportional-fair (PF) scheduling problem in a 5G NR environment. The real-time requirement for determining the optimal resource allocation and modulation and coding scheme (MCS) for each user is 125 μs.
For the second type of problems, where there is no mathematical formulation, we propose to employ model-free deep learning (DL) or deep reinforcement learning (DRL) techniques along with judicious consideration of timing requirement throughout the design. Under this approach, we study the following two problems:
• A DRL-based Approach to Dynamic eMBB/URLLC Multiplexing in 5G NR: We study the problem of dynamic multiplexing of eMBB and URLLC on the same channel through preemptive resource puncturing. The real-time requirement for determining the optimal URLLC puncturing solution is 1 ms.
• A DL-based Link Adaptation for eMBB/URLLC Multiplexing in 5G NR: We investigate MCS selection for eMBB traffic under the impact of URLLC preemptive puncturing. The real-time requirement for determining the optimal MCSs for all eMBB transmissions scheduled in a transmission interval is 125 μs.
|
343 |
Asymmetry Learning for Out-of-distribution TasksChandra Mouli Sekar (18437814) 02 May 2024 (has links)
<p dir="ltr">Despite their astonishing capacity to fit data, neural networks have difficulties extrapolating beyond training data distribution. When the out-of-distribution prediction task is formalized as a counterfactual query on a causal model, the reason for their extrapolation failure is clear: neural networks learn spurious correlations in the training data rather than features that are causally related to the target label. This thesis proposes to perform a causal search over a known family of causal models to learn robust (maximally invariant) predictors for single- and multiple-environment extrapolation tasks.</p><p dir="ltr">First, I formalize the out-of-distribution task as a counterfactual query over a structural causal model. For single-environment extrapolation, I argue that symmetries of the input data are valuable for training neural networks that can extrapolate. I introduce Asymmetry learning, a new learning paradigm that is guided by the hypothesis that all (known) symmetries are mandatory even without evidence in training, unless the learner deems it inconsistent with the training data. Asymmetry learning performs a causal model search to find the simplest causal model defining a causal connection between the target labels and the symmetry transformations that affect the label. My experiments on a variety of out-of-distribution tasks on images and sequences show that proposed methods extrapolate much better than the standard neural networks.</p><p dir="ltr">Then, I consider multiple-environment out-of-distribution tasks in dynamical system forecasting that arise due to shifts in initial conditions or parameters of the dynamical system. I identify key OOD challenges in the existing deep learning and physics-informed machine learning (PIML) methods for these tasks. To mitigate these drawbacks, I combine meta-learning and causal structure discovery over a family of given structural causal models to learn the underlying dynamical system. In three simulated forecasting tasks, I show that the proposed approach is 2x to 28x more robust than the baselines.</p>
|
344 |
Minimalism Yields Maximum Results: Deep Learning with Limited ResourceHaoyu Wang (19193416) 22 July 2024 (has links)
<p dir="ltr">Deep learning models have demonstrated remarkable success across diverse domains, including computer vision and natural language processing. These models heavily rely on resources, encompassing annotated data, computational power, and storage. However, mobile devices, particularly in scenarios like medical or multilingual contexts, often face constraints with computing power, making ample data annotation prohibitively expensive. Developing deep learning models for such resource-constrained scenarios presents a formidable challenge. Our primary goal is to enhance the efficiency of state-of-the-art neural network models tailored for resource-limited scenarios. Our commitment lies in crafting algorithms that not only mitigate annotation requirements but also reduce computational complexity and alleviate storage demands. Our dissertation focuses on two key areas: Parameter-efficient Learning and Data-efficient Learning. In Part 1, we present our studies on parameter-efficient learning. This approach targets the creation of lightweight models for efficient storage or inference. The proposed solutions are tailored for diverse tasks, including text generation, text classification, and text/image retrieval. In Part 2, we showcase our proposed methods for data-efficient learning, concentrating on cross-lingual and multi-lingual text classification applications. </p>
|
345 |
Size-Adaptive Convolutional Neural Network with Parameterized-Swish Activation for Enhanced Object DetectionYashwanth Raj Venkata Krishnan (18322572) 03 June 2024 (has links)
<p> In computer vision, accurately detecting objects of varying sizes is essential for various applications, such as autonomous vehicle navigation and medical imaging diagnostics. Addressing the variance in object sizes presents a significant challenge requiring advanced computational solutions for reliable object recognition and processing. This research introduces a size-adaptive Convolutional Neural Network (CNN) framework to enhance detection performance across different object sizes. By dynamically adjusting the CNN’s configuration based on the observed distribution of object sizes, the framework employs statistical analysis and algorithmic decision-making to improve detection capabilities. Further innovation is presented through the Parameterized-Swish activation function. Distinguished by its dynamic parameters, this function is designed to better adapt to varying input patterns. It exceeds the performance of traditional activation functions by enabling faster model convergence and increasing detection accuracy, showcasing the effectiveness of adaptive activation functions in enhancing object detection systems. The implementation of this model has led to notable performance improvements: a 11.4% increase in mean Average Precision (mAP) and a 40.63% increase in frames per second (FPS) for small objects, demonstrating enhanced detection speed and accuracy. The model has achieved a 48.42% reduction in training time for medium-sized objects while still improving mAP, indicating significant efficiency gains without compromising precision. Large objects have seen a 16.9% reduction in training time and a 76.04% increase in inference speed, showcasing the model’s ability to expedite processing times substantially. Collectively, these advancements contribute to a more than 12% increase in detection efficiency and accuracy across various scenarios, highlighting the model’s robustness and adaptability in addressing the critical challenge of size variance in object detection. </p>
|
346 |
ENHANCING PRECISION OF OBJECT DETECTORS: BRIDGING CLASSIFICATION AND LOCALIZATION GAPS FOR 2D AND 3D MODELSNIRANJAN RAVI (7013471) 03 June 2024 (has links)
<p dir="ltr">Artificial Intelligence (AI) has revolutionized and accelerated significant advancements in various fields such as healthcare, finance, education, agriculture and the development of autonomous vehicles. We are rapidly approaching Level 5 Autonomy due to recent developments in autonomous technology, including self-driving cars, robot navigation, smart traffic monitoring systems, and dynamic routing. This success has been made possible due to Deep Learning technologies and advanced Computer Vision (CV) algorithms. With the help of perception sensors such as Camera, LiDAR and RADAR, CV algorithms enable a self-driving vehicle to interact with the environment and make intelligent decisions. Object detection lays the foundations for various applications, such as collision and obstacle avoidance, lane detection, pedestrian and vehicular safety, and object tracking. Object detection has two significant components: image classification and object localization. In recent years, enhancing the performance of 2D and 3D object detectors has spiked interest in the research community. This research aims to resolve the drawbacks associated with localization loss estimation of 2D and 3D object detectors by addressing the bounding box regression problem, addressing the class imbalance issue affecting the confidence loss estimation, and finally proposing a dynamic cross-model 3D hybrid object detector with enhanced localization and confidence loss estimation.</p><p dir="ltr">This research aims to address challenges in object detectors through four key contributions. In the first part, we aim to address the problems associated with the image classification component of 2D object detectors. Class imbalance is a common problem associated with supervised training. Common causes are noisy data, a scene with a tiny object surrounded by background pixels, or a dense scene with too many objects. These scenarios can produce many negative samples compared to positive ones, affecting the network learning and reducing the overall performance. We examined these drawbacks and proposed an Enhanced Hard Negative Mining (EHNM) approach, which utilizes anchor boxes with 20% to 50% overlap and positive and negative samples to boost performance. The efficiency of the proposed EHNM was evaluated using Single Shot Multibox Detector (SSD) architecture on the PASCAL VOC dataset, indicating that the detection accuracy of tiny objects increased by 3.9% and 4% and the overall accuracy improved by 0.9%. </p><p dir="ltr">To address localization loss, our second approach investigates drawbacks associated with existing bounding box regression problems, such as poor convergence and incorrect regression. We analyzed various cases, such as when objects are inclusive of one another, two objects with the same centres, two objects with the same centres and similar aspect ratios. During our analysis, we observed existing intersections over Union (IoU) loss and its variant’s failure to address them. We proposed two new loss functions, Improved Intersection Over Union (IIoU) and Balanced Intersection Over Union (BIoU), to enhance performance and minimize computational efforts. Two variants of the YOLOv5 model, YOLOv5n6 and YOLOv5s, were utilized to demonstrate the superior performance of IIoU on PASCAL VOC and CGMU datasets. With help of ROS and NVIDIA’s devices, inference speed was observed in real-time. Extensive experiments were performed to evaluate the performance of BIoU on object detectors. The evaluation results indicated MASK_RCNN network trained on the COCO dataset, YOLOv5n6 network trained on SKU-110K and YOLOv5x trained on the custom e-scooter dataset demonstrated 3.70% increase on small objects, 6.20% on 55% overlap and 9.03% on 80% overlap.</p><p dir="ltr">In the earlier parts, we primarily focused on 2D object detectors. Owing to its success, we extended the scope of our research to 3D object detectors in the later parts. The third portion of our research aims to solve bounding box problems associated with 3D rotated objects. Existing axis-aligned loss functions suffer a performance gap if the objects are rotated. We enhanced the earlier proposed IIoU loss by considering two additional parameters: the objects’ Z-axis and rotation angle. These two parameters aid in localizing the object in 3D space. Evaluation was performed on LiDAR and Fusion methods on 3D KITTI and nuScenes datasets.</p><p dir="ltr">Once we addressed the drawbacks associated with confidence and localization loss, we further explored ways to increase the performance of cross-model 3D object detectors. We discovered from previous studies that perception sensors are volatile to harsh environmental conditions, sunlight, and blurry motion. In the final portion of our research, we propose a hybrid 3D cross-model detection network (MAEGNN) equipped with MaskedAuto Encoders 14 (MAE) and Graph Neural Networks (GNN) along with earlier proposed IIoU and ENHM. The performance evaluation on MAEGNN on the KITTI validation dataset and KITTI test set yielded a detection accuracy of 69.15%, 63.99%, 58.46% and 40.85%, 37.37% on 3D pedestrians with overlap of 50%. This developed hybrid detector overcomes the challenges of localization error and confidence estimation and outperforms many state-of-art 3D object detectors for autonomous platforms.</p>
|
347 |
Effectiveness factor of self-compacting concrete in compression for limit analysis of continuous deep beamsKhatab, Mahmoud A.T., Ashour, Ashraf 20 March 2018 (has links)
Yes / The current design codes, such as ACI 318-14, EC2 and CSA23.3-04, in addition to previous research investigations suggested different expressions for concrete effectiveness factor for use in limit state design of concrete structures. All these equations are based on different design parameters and proposed for normal concrete deep beams. This research evaluates the use of different effectiveness factor equations in the upper and lower bond analyses of continuously-supported self-compacting concrete (SCC) deep beams. Moreover, a new effectiveness factor expression is suggested to be used for upper and lower bound solutions with the aim of improving predictions of the load capacity of continuously-supported SCC deep beams. For the range of deep beams considered, the strut-and-tie method with the proposed effectiveness factor formula achieved accurate predictions, with a mean of 1.01, a standard deviation of 6.7% and a coefficient of variation of 6.8%. For the upper-bound analysis, the predictions of the proposed effectiveness factor equation were more accurate than those of the formulas suggested by previous investigations. Overall, although the proposed effectiveness factor achieved very accurate predictions, further validation for the proposed formula is needed since the only data available on continuous SCC deep beams are those collected form the current study.
|
348 |
Experimental Study of Fine Bubble Application on Lettuce Growth in Hydroponic Nutrients Solution at Plant Factory / 植物工場における水耕養液中のレタス生育に対するファインバブル適用の実験的研究Indrawan, Cahyo Adilaksono 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第25347号 / 農博第2613号 / 新制||農||1108(附属図書館) / 学位論文||R6||N5519 / DGAM / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 野口 良造, 教授 飯田 訓久, 教授 近藤 直 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
349 |
Quantile Regression Deep Q-Networks for Multi-Agent System ControlHowe, Dustin 05 1900 (has links)
Training autonomous agents that are capable of performing their assigned job without fail is the ultimate goal of deep reinforcement learning. This thesis introduces a dueling Quantile Regression Deep Q-network, where the network learns the state value quantile function and advantage quantile function separately. With this network architecture the agent is able to learn to control simulated robots in the Gazebo simulator. Carefully crafted reward functions and state spaces must be designed for the agent to learn in complex non-stationary environments. When trained for only 100,000 timesteps, the agent is able reach asymptotic performance in environments with moving and stationary obstacles using only the data from the inertial measurement unit, LIDAR, and positional information. Through the use of transfer learning, the agents are also capable of formation control and flocking patterns. The performance of agents with frozen networks is improved through advice giving in Deep Q-networks by use of normalized Q-values and majority voting.
|
350 |
Emosjonelt arbeid i offentlighetens tjeneste : En kvalitativ studie av politiets emosjonelle arbeid / Emotional Labor in Public Service : A qualitative study of the police’s emotional laborBru, Linn Sunniva, Nilsson, Therese January 2011 (has links)
A police officer may be subject to anumber of complex situationsand stresses intheir everyday work in which different emotionsmay occur, and whereemotional labour is necessary. Our intent of the study isto increase understanding of the emotional partof the police work. How the police areexperiencing an emotional preparation for work,experiencing the feelings that occur in work,and how emotions are processed. Wewill also see howthe police handlethe transmutation from their private feelings anddeal with the waythey express the emotional expressions that the colleagues and thepublic expect to see in different situations. We will see how theyhandle the transmutation from public feelings toprivate feelings again.The intention of the study is also to see if thereare organizational conditions that cansimplify the emotional labour of a police,and identify the conditions. We haveconducted seven qualitativeinterviews. By means of thecollected empirical and the theoretical basewe will analyze the emotional labour of a police, and analyze the factors that may affect the emotionallabour.The analysis describes the presence of individual factors, social support and organizational factorsthat can affectthe emotional workof a police. We illustratethe emotional workof a police with thehelp of a model that shows the relationship between different the factors. / Politietkan bli utsatt for en rekke komplekse og påkjennende situasjoner i sinarbeidshverdag hvor ulike følelser kan oppstå, og der et emosjonelt arbeid blirnødvendig. Vårt formål med studiet er å øke forståelsen for denemosjonelle delen i politiets arbeid. Hvordan politiet opplever forberedelsentil et emosjonelt arbeid, opplever følelsene som oppstår i arbeidet, samthvordan følelsene bearbeides. Vi vil også se hvordan politiet handtererovergangen fra sine private følelser, og handterer de slik at de viser defølelsesutrykk som kollegaer og allmennheten forventer seg å se i ulikesituasjoner. Vi vil også se hvordan overgangen handteres fra de offentligefølelsene til private igjen. Studiets formål er å se om det finnesorganisatoriske forutsetninger som kan forenkle det emosjonelle arbeidet til politiet,og hvordan disse ser ut. Vi har gjennomført syv kvalitative intervjuer. Med hjelp av den innsamledeempirien og studiets teoretiske utgangspunkt analyserer vi politietsemosjonelle arbeid, og faktorer som kan påvirke det emosjonelle arbeidet. Analysen beskriver at det finnesindividuelle faktorer, sosial støtte og organisatoriske faktorer som kanpåvirke det emosjonelle arbeidet til politiet. Vi illustrerer det emosjonellearbeidet til politiet med hjelp av en egen modell som viser sammenhengen mellomde ulike faktorene.
|
Page generated in 0.0838 seconds