• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2913
  • 276
  • 199
  • 187
  • 160
  • 82
  • 48
  • 29
  • 25
  • 21
  • 19
  • 15
  • 14
  • 12
  • 12
  • Tagged with
  • 4944
  • 2921
  • 1294
  • 1093
  • 1081
  • 808
  • 743
  • 736
  • 551
  • 545
  • 541
  • 501
  • 472
  • 463
  • 456
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Identifying streamflow changes in western North America from 1979 to 2021 using Deep Learning approaches

Tang, Weigang 11 1900 (has links)
Streamflow in Western North America (WNA) has been experiencing pronounced changes in terms of volume and timing over the past century, primarily driven by natural climate variability and human-induced climate changes. This thesis advances on previous work by revealing the most recent streamflow changes in WNA using a comprehensive suite of classical hydrometric methods along with novel Deep Learning (DL) based approaches for change detection and classifica- tion. More than 500 natural streams were included in the analysis across western Canada and the United States. Trend analyses based on the Mann-Kendall test were conducted on a wide selection of classic hydrometric indicators to represent varying aspects of streamflow over 43 years from 1979 to 2021. A general geograph- ical divide at approximately 46◦N degrees latitude indicates that total streamflow is increasing to the north while declining to the south. Declining late summer flows (July–September) were also widespread across the WNA domain, coinciding with an overall reduction in precipitation. Some changing patterns are regional specific, including: 1) increased winter low flows at high latitudes; 2) earlier spring freshet in Rocky Mountains; 3) increased autumns flows in coastal Pacific North- west; and 4) dramatic drying in southwestern United States. In addition to classic hydrometrics, trend analysis was performed on Latent Features (LFs), which were extracted by Variation AutoEncoder (VAE) from raw streamflow data and are considered “machine-learned hydrometrics”. Some LFs with direct hydrological implications were closely associated with the classical hydrometric indicators such as flow quantity, seasonal distribution, timing and magnitude of freshet, and snow- to-rain transition. The changing patterns of streamflows revealed by LFs show direct agreement with the hydrometric trends. By reconstructing hydrographs from select LFs, VAE also provides a mechanism to project changes in streamflow patterns in the future. Furthermore, a parametric t-SNE method based on DL technology was developed to visualize similarity among a large number of hydro- graphs on a 2-D map. This novel method allowed fast grouping of hydrologically similar rivers based on their flow regime type and provides new opportunities for streamflow classification and regionalization. / Thesis / Doctor of Philosophy (PhD)
252

Yield Prediction Using Spatial and Temporal Deep Learning Algorithms and Data Fusion

Bisht, Bhavesh 24 November 2023 (has links)
The world’s population is expected to grow to 9.6 billion by 2050. This exponential growth imposes a significant challenge on food security making the development of efficient crop production a growing concern. The traditional methods of analyzing soil and crop yield rely on manual field surveys and the use of expensive instruments. This process is not only time-consuming but also requires a team of specialists making this method of prediction expensive. Prediction of yield is an integral part of smart farming as it enables farmers to make timely informed decisions and maximize productivity while minimizing waste. Traditional statistical approaches fall short in optimizing yield prediction due to the multitude of diverse variables that influence crop production. Additionally, the interactions between these variables are non-linear which these methods fail to capture. Recent approaches in machine learning and data-driven models are better suited for handling the complexity and variability of crop yield prediction. Maize, also known as corn, is a staple crop in many countries and is used in a variety of food products, including bread, cereal, and animal feed. In 2021-2022, the total production of corn was around 1.2 billion tonnes superseding that of wheat or rice, making it an essential element of food production. With the advent of remote sensing, Unmanned aerial vehicles or UAVs are widely used to capture high-quality field images making it possible to capture minute details for better analysis of the crops. By combining spatial features, such as topography and soil type, with crop growth information, it is possible to develop a robust and accurate system for predicting crop yield. Convolutional Neural Networks (CNNs) are a type of deep neural network that has shown remarkable success in computer vision tasks, achieving state-of-the-art performance. Their ability to automatically extract features and patterns from data sets makes them highly effective in analyzing complex and high-dimensional datasets, such as drone imagery. In this research, we aim to build an effective crop yield predictor using data fusion and deep learning. We propose several Deep CNN architectures that can accurately predict corn yield before the end of the harvesting season which can aid farmers by providing them with valuable information about potential harvest outcomes, enabling them to make informed decisions regarding resource allocation. UAVs equipped with RGB (Red Green Blue) and multi-spectral cameras were scheduled to capture high-resolution images for the entire growth period of 2021 of 3 fields located in Ottawa, Ontario, where primarily corn was grown. Whereas, the ground yield data was acquired at the time of harvesting using a yield monitoring device mounted on the harvester. Several data processing techniques were employed to remove erroneous measurements and the processed data was fed to different CNN architectures, and several analyses were done on the models to highlight the best techniques/methods that lead to the most optimal performance. The final best-performing model was a 3-dimensional CNN model that can predict yield utilizing the images from the Early(June) and Mid(July) growing stages with a Mean Absolute Percentage error of 15.18% and a Root Mean Squared Error of 17.63 (Bushels Per Acre). The model trained on data from Field 1 demonstrated an average Correlation Coefficient of 0.57 between the True and Predicted yield values from Field 2 and Field 3. This research provides a direction for developing an end-to-end yield prediction model. Additionally, by leveraging the results from the experiments presented in this research, image acquisition, and computation costs can be brought down.
253

Algebraic Learning: Towards Interpretable Information Modeling

Yang, Tong January 2021 (has links)
Thesis advisor: Jan Engelbrecht / Along with the proliferation of digital data collected using sensor technologies and a boost of computing power, Deep Learning (DL) based approaches have drawn enormous attention in the past decade due to their impressive performance in extracting complex relations from raw data and representing valuable information. At the same time, though, rooted in its notorious black-box nature, the appreciation of DL has been highly debated due to the lack of interpretability. On the one hand, DL only utilizes statistical features contained in raw data while ignoring human knowledge of the underlying system, which results in both data inefficiency and trust issues; on the other hand, a trained DL model does not provide to researchers any extra insight about the underlying system beyond its output, which, however, is the essence of most fields of science, e.g. physics and economics. The interpretability issue, in fact, has been naturally addressed in physics research. Conventional physics theories develop models of matter to describe experimentally observed phenomena. Tasks in DL, instead, can be considered as developing models of information to match with collected datasets. Motivated by techniques and perspectives in conventional physics, this thesis addresses the issue of interpretability in general information modeling. This thesis endeavors to address the two drawbacks of DL approaches mentioned above. Firstly, instead of relying on an intuition-driven construction of model structures, a problem-oriented perspective is applied to incorporate knowledge into modeling practice, where interesting mathematical properties emerge naturally which cast constraints on modeling. Secondly, given a trained model, various methods could be applied to extract further insights about the underlying system, which is achieved either based on a simplified function approximation of the complex neural network model, or through analyzing the model itself as an effective representation of the system. These two pathways are termed as guided model design (GuiMoD) and secondary measurements, respectively, which, together, present a comprehensive framework to investigate the general field of interpretability in modern Deep Learning practice. Remarkably, during the study of GuiMoD, a novel scheme emerges for the modeling practice in statistical learning: Algebraic Learning (AgLr). Instead of being restricted to the discussion of any specific model structure or dataset, AgLr starts from idiosyncrasies of a learning task itself and studies the structure of a legitimate model class in general. This novel modeling scheme demonstrates the noteworthy value of abstract algebra for general artificial intelligence, which has been overlooked in recent progress, and could shed further light on interpretable information modeling by offering practical insights from a formal yet useful perspective. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
254

Uncertainty Quantification in Neural Network-Based Classification Models

Amiri, Mohammad Hadi 10 January 2023 (has links)
Probabilistic behavior in perceiving the environment and take critical decisions have an inevitable role in human life. A decision is concerned with a choice among the available alternatives and is always subject to unknown elements concerning the future. The lack of complete data, insufficient scientific, behavioral, and industry development and of course defects in measurement methods, affect the reliability of an action’s outcome. Thus, having a proper estimation of this reliability or uncertainty could be very advantageous particularly when an individual or generally a subject is faced with a high risk. With the fact that there are always uncertainty elements whose values are unknown and these enter into a processes through multiple sources, it has been a primary challenge to design an efficient representation of confidence objectively. With the aim of addressing this problem, a variety of researches have been conducted to introduce frameworks in metrology of uncertainty quantification that are comprehensive enough and have transferability into different areas. Moreover, it’s also a challenging task to define a proper index that reflects more aspects of the problem and measurement process. With significant advances in Artificial Intelligence in the past decade, one of the key elements, in order to ease human life by giving more control to machines, is to heed the uncertainty estimation for a prediction. With a focus on measurement aspects, this thesis attends to demonstrate how a different measurement index affects the quality of evaluated predictive uncertainty of neural networks. Finally, we propose a novel index that shows uncertainty values with the same or higher quality than existing methods which emphasizes the benefits of having a proper measurement index in managing the risk of the outcome from a classification model.
255

Pore development in meat products during deep-fat frying

Kassama, Lamin Samboujang January 2003 (has links)
No description available.
256

Multi-Object Tracking Using Dual-Attention with Regional-Representation

Chen, Weijian January 2021 (has links)
Nowadays, researchers have shown convolutional neural network (CNN) can achieve an improved performance in multi-object tracking (MOT) by performing detection and re-identification (ReID) simultaneously. Many models have been created to overcome challenges and bring the state-of-the-art performance to a new level. However, due to the fact the CNN models only utilize feature from a local region, the potential of the model has not been fully utilized. The long range dependencies in spatial domain are usually difficult for a network to capture. Hence, how to obtain such dependencies has become the new focus in MOT field. One approach is to adopt the self-attention mechanism named transformer. Since it was successfully transferred from natural language processing to computer vision, many recent works have implemented it to their trackers. With the introduce of global information, the trackers become more robust and stable. There are also traditional methods which are re-designed in the manner of CNN and achieve satisfying performance such as optical flow. It can generate a correlated relation between feature maps and also obtain non-local information. However, the introduces of these mechanism usually causes a significant surge in computational power and memory. They also requires huge amount of epochs to train thus the training time is largely increased. To solve this issue, we propose a new method to gather non-local information based on the existing self-attention methods, we named it dual attention with regional-representation, which significantly reduces the training time as well as the inference time, but only causes a small increase in computational memory and are able to run with a reasonable speed. Our experiments shows this module can help the ReID be more stable to improve the performance in different tasks. / Thesis / Master of Applied Science (MASc)
257

A Deep Learning approach to predict software bugs using micro patterns and software metrics

Brumfield, Marcus 07 August 2020 (has links)
Software bugs prediction is one of the most active research areas in the software engineering community. The process of testing and debugging code proves to be costly during the software development life cycle. Software metrics measure the quality of source code to identify software bugs and vulnerabilities. Traceable code patterns are able to de- scribe code at a finer granularity level to measure quality. Micro patterns will be used in this research to mechanically describe java code at the class level. Machine learning has also been introduced for bug prediction to localize source code for testing and debugging. Deep Learning is a branch of Machine Learning that is relatively new. This research looks to improve the prediction of software bugs by utilizing micro patterns with deep learning techniques. Software bug prediction at a finer granularity level will enable developers to localize code to test and debug during the development process.
258

The glass ceiling: an analysis of women in administrative capacities in public universities in the Deep South

Meredith, Judy Alsobrooks 11 August 2007 (has links)
This research explores the barriers that have hindered women?s ability to acquire top administrative positions in higher education in the Deep South. Previous studies document the fact that while more women are attending college nationally, far fewer women attain upper level administrative positions at their universities than do men. Sexism and family/work conflicts are known hindrances in women?s ability to assume key leadership roles in higher education. This research examines women?s perceptions of such obstacles in achieving top administrative positions at public universities in Alabama, Georgia, Louisiana, Mississippi, and South Carolina. Women administrators and women who are full and associate professors at both traditionally white and historically black colleges and universities (HBCU) were surveyed on their attitudes and perceptions of barriers affecting the representation of women in administrative and upper administrative positions. This research indicates that women largely believe that men are the key decision makers at their universities. However, contrary to my hypotheses, for those women faculty and administrators surveyed who believe that there are no barriers for women in achieving administrative or upper administrative posts, many of them state they have no intention in seeking higher positions. My research findings also reveal that finances is the primary motivator for many women faculty and administrators in moving up the administrative ladder. Women faculty and administrators with financially dependent families and those who simply desire to make more money state that they would seek administrative and upper administrative positions. Further, those women faculty members and administrators who perceive their institution as having familyriendly policies and practices indicated that they are not inspired to achieve an administrative or upper administrative position based on that factor.
259

Across the Deep South:a linked story collection

Maroney, James 02 May 2009 (has links)
Across the Deep South: A Linked Story Collection focuses on the establishment and reestablishment of themes that reflect the mutability of characters over time, along with the equally mutable notion of identity found within the cultural context of the modern Southern United States. The stories follow the paradigm of Sherwood Anderson’s linked story collection Winesburg, Ohio in that character and geographical location combine over the course of multiple stories to recontextualize theme and character development through intertextual cohesiveness. Preceding the collection of stories is a critical introduction that considers the linked story collection as an independent form of fiction occupying a distinct space between the non-interrelated short story collection and the novel.
260

The Effect of DBS Settings on Neuropsychological Functioning in Patients with Parkinson's Disease

Mash, Kathleen M. January 2007 (has links)
No description available.

Page generated in 0.076 seconds