Spelling suggestions: "subject:"magnetizing"" "subject:"demagnetization""
1 |
Geometry Effects on the Electromagnetic Properties of Linear Magnetic Materials and Superconductors in the Critical StatePardo Vivé, Enric 23 April 2004 (has links)
Efectes de Geometria en les Propietats Electromagnètiques de Materials Lineals i de Superconductors en l'Estat CríticEl comportament electromagnètic d'un cert material no només depèn de les seves propietats intrínseques sinó també de la geometria de la mostra estudiada. De fet, algunes magnituds magnètiques en mostres del mateix material però geometria diferent poden diferir en varis ordres de magnitud. La tesi està dividida en dues parts. La primera part està dedicada a l'estudi dels efectes de geometria, també denominats efectes desimantadors, en mostres de materials lineals, homogenis i isòtrops (LHI) sota l'aplicació d'un camp magnètic uniforme. Per quantificar els efectes desimantadors en les magnituds magnètiques més rellevants en materials LHI s'utilitzen els factors de desimantació fluxmètric i magnetomètric (Nf i Nm); el seu càlcul teòric és necessari per poder determinar algunes propietats intrínseques dels materials a partir d'experiments. Després de detectar grans mancances en els resultats teòrics previs dels factors de desimantació per prismes rectangulars, presentem nombrosos càlculs originals de Nf i Nm. Pels casos de prismes infinitament llargs i prismes quadrats finits Nf i Nm es calculen per un rang ampli de relació gruix-amplada i susceptibilitat magnètica. Pel cas d'un prisma finit perfectament diamagnètic es presenta un estudi sistemàtic dels factors de desimantació en funció de les dimensions relatives del prisma a partir de càlculs precisos. També es calculen resultats numèrics per cilindres amb camp aplicat en la direcció radial, situació per la que existien molt poques dades.L'altra part de la tesi consisteix en un estudi de superconductors durs, que són materials molt interessants per aplicacions pràctiques. En aquest cas, l'estudi es centra en algunes geometries infinitament llargues immerses en un camp magnètic altern i uniforme aplicat en direcció transversal o bé que transporten un corrent elèctric altern. Concretament, s'estudien amb detall les geometries de prisma infinit de secció rectangular, el·líptica i varis casos de conjunts de múltiples prismes rectangulars. L'estudi d'aquestes geometries és de gran importància pràctica a l'hora de dissenyar cintes i cables superconductors per treballar en dispositius elèctrics en corrent altern, pels que és fonamental la reducció de les pèrdues energètiques per la viabilitat de la tecnologia basada en cables superconductors. Per fer l'estudi esmentat es desenvolupa un mètode numèric basat en el model d'estat crític per superconductors i la minimització de l'energia magnètica. Pels casos de camp magnètic aplicat, el mètode permet descriure dos tipus de connexió entre filaments, elèctricament aïllats un a un o interconnectats entre sí al extrems dels prismes. Malgrat que el primer tipus de connexió és la que presenta pèrdues energètiques més baixes, no havia estat possible simular-lo fins ara. Els resultats numèrics obtinguts a partir d'aquest mètode són originals i de gran precisió. A més, la descripció sistemàtica del problema permet realitzar un estudi en profunditat de les propietats electromagnètiques per aquestes geometries, gràcies al que s'obtenen unes tendències bàsiques per reduir les pèrdues energètiques. / The electromagnetic behaviour of a certain material do not only depends on its internal properties but also on the geometry of the studied sample. Actually, some magnetic quantities in samples of the same material but different geometry can vary in several orders of magnitude. The thesis is divided into two parts. In the first part we study the geometry effects, also called demagnetizing effects, in samples made of linear homogenous isotropic materials (LHI) subjected to a uniform applied magnetic field. In order to quantify the demagnetizing effects on the most relevant magnetic quantities of the samples, we carry out accurate calculations for the fluxmetric and magnetometric demagnetizing factors (Nf and Nm); the calculation of these factors is needed to determine some internal magnetic properties of materials from experiments. After detecting some important lacks in the already existing theoretical results for rectangular prisms, we present a complete set of original calculated data of Nf and Nm. For the cases of infinitely long rectangular prisms and finite square bars we calculate Nf and Nm for a wide range of thickness-to-width aspect ratio and magnetic susceptibility. For the case of a perfectly shielding rectangular prism, we present a systematic study of the demagnetizing factors as a function of the relative dimensions of the prism by means of accurate numerical calculations. Numerical results are also presented for cylinders under radial applied field, situation for which there existed very few data.The other part of the thesis consists in a study of hard superconductors, which are materials very interesting for applications. For this case, we have focused on some infinitely long geometries subjected to either a transverse AC applied field or a transport alternating current. Specifically, there have been studied in detail the geometries of an infinitely long prism with rectangular cross-section, elliptical one and some arrangements of several rectangular prisms. The study of these geometries is of great practical importance for the design of superconducting tapes and cables for devices operating in AC conditions, for which the reduction of the AC loss is of vital importance for the viability of the technology based on superconducting wires. In order to do such an study, we develop a numerical method based on the critical-state model for superconductors and magnetic energy minimization. For the cases considering an applied magnetic field, the method allows the description of two different kinds of filament connexion, mutually electrically isolated or interconnected at the ends of the prisms. Although the first kind of connection presents lower AC loss, this situation has not been simulated until now by any author. The numerical results obtained from this method are original and very accurate. Furthermore, the systematic study of the problem provides a deep understanding of the electromagnetic properties for these geometries, thanks to which we obtain some general trends to reduce the AC loss.
|
2 |
Synthèse, caractérisation et modélisation de matériaux multiferroiques (magnétoélectriques) composites massifs / Synthesis, characterisation and modeling of bulk multiferroic (magnetoelectric) composite materialsAubert, Alex 19 October 2018 (has links)
L'effet magnétoélectrique direct est défini par la modification de la polarisation électrique à partir de l'application d'un champ magnétique. Bien que cet effet existe de manière intrinsèque dans certains matériaux, nous étudions ici l'effet extrinsèque, où l'effet magnétoélectrique résulte d'un couplage intermédiaire entre deux phases distinctes. Dans ce cas, l'idée la plus répandue est de lier mécaniquement (par un collage) un matériau piézoélectrique à un matériau magnétostrictif. Ainsi, en appliquant un champ magnétique, le matériau magnétostrictif se déforme, transmet une contrainte au matériau piézoélectrique qui voit sa polarisation changer. Dans cette thèse nous nous intéressons à deux types de composites magnétoélectriques laminaires. Ceux employant les ferrites magnétostrictifs doux (ferrite de nickel) et ceux qui utilisent les ferrites semi-durs (ferrite de cobalt). Pour chacun des composites, on s'intéresse à optimiser l'effet magnétoélectrique en mettant en avant les paramètres qui l'influencent majoritairement. De ce fait, nous traitons différents aspects tels que l'influence de l'effet démagnétisant dans les multicouches, de la fraction volumique des composites, des phases secondaires, de la magnétostriction dynamique, de l'anisotropie magnétique uniaxe, et enfin de la fréquence et de l'amplitude du champ d'excitation magnétique sur l'effet magnétoélectrique. Grâce à la compréhension de ces phénomènes, nous avons pu optimiser le couplage magnétoélectrique de manière à développer un capteur de courant présentant des caractéristiques comparables aux capteurs de courant actuellement commercialisés et qui utilisent d'autres technologies (effet Hall, transformateur de courant). / The direct magnetoelectric effect is defined by the modification of the electric polarization induced by a magnetic field. Although this effect exists intrinsically in some materials, here we study the extrinsic effect, where the magnetoelectric effect results from an intermediate coupling between two distinct phases. In this case, the most common idea is to mechanically couple (by gluing) a piezoelectric material to a magnetostrictive material. Thus, by applying a magnetic field, the magnetostrictive material is deformed and transmits a stress to the piezoelectric material which makes its polarization change.In this thesis, we are interested in two types of laminar magnetoelectric composites: those using soft magnetostrictive ferrites (nickel ferrite) and those using semi-hard ferrites (cobalt ferrite). For each composites, we want to optimize the magnetoelectric effect by highlighting the parameters that mainly influence this coupling. As a result, we deal with different aspects such as the influence of the demagnetizing effect in multilayers, the volume fraction in the composites, the secondary phases, the dynamic magnetostriction, the uniaxial magnetic anisotropy, and finally the frequency and the amplitude of the magnetic exciting field on the magnetoelectric effect. Thanks to the understanding of the physical phenomena involved and the optimization of the resulting magnetoelectric coupling, we have been able to develop a current sensor with characteristics comparable to currently marketed current sensors that use other technologies (Hall effect, current transformer).
|
3 |
Multicouches magnétiques à fréquences de résonance ajustable pour applications hyperfréquences / Magnetic multilayers with ajustable resonance frequencies for hyperfrequency applicationsBonneau-Brault, Aurélien 04 December 2013 (has links)
Cette thèse avait pour objectif d'augmenter la fréquence de travail d'un multicouche magnéto-diélectrique pour des applications des Nouvelles Technologies de l'Information et de la Communication (NTIC). Ainsi, deux types de structures ont été étudiés : des multicouches (CoO=CoFeB)n et des tricouches Py/Ru/Py. Dans les empilements (CoO=CoFeB)n, la montée en fréquence est assurée par une anisotropie de surface du CoFeB induite par une rugosité orientée à la surface de la couche CoO. Cette rugosité est générée par la géométrie de dépôt. La fréquence de résonance de ce système est ajustable sur toute la gamme de fréquence des NTIC par le choix des épaisseurs de CoO et de CoFeB. Ces propriétés magnétiques sont modélisées en ajoutant à l'anisotropie intrinsèque du CoFeB un terme démagnétisant. Celui-ci est calculé à partir des observations de la surface de la couche CoO par microscopie à force atomique. Les propriétés magnétiques obtenues sur le bicouche sont maintenues dans le cas d'un multicouche, montrant que la rugosité est peu affectée par l'empilement. Dans les tricouches Py/Ru/Py, le terme s'ajoutant à l'anisotropie intrinsèque du Py est induit par le couplage des deux couches de Py via les électrons de conduction de la couche de Ru (couplage RKKY). Selon les échantillons, le terme de couplage antiferromagnétique ou quadratique est prépondérant. La modélisation du comportement statique permet de quantifier ces termes de couplage. La modélisation du comportement dynamique prédit les deux fréquences de résonance caractéristiques observées expérimentalement. / The aim of this thesis was to increase the working frequency of a magneto-dielectric multilayer for ICT applications. Two structures were studied : (CoO=CoFeB)n multilayers and Py/Ru/Py trilayer. In (CoO=CoFeB)n stacks, the CoFeB resonance frequency is increased thanks to a surface anisotropy induced by the CoO oriented roughness. This roughness is generated by the deposition geometry. The resonance frequency of this system is adjustable over the entire ICT frequency range by choosing the CoO and CoFeB thicknesses. These magnetic properties are simulated by adding a demagnetizing term to the CoFeB intrinsic volume anisotropy. This term is calculated from AFM observations of CoO surface. The magnetic properties of the bilayer are not degraded in multilayers because the roughness is poorly affected by the stacking. In trilayer Py/Ru/Py, the term added to the Py intrinsic anisotropy is induced by the coupling of the two Py layers via the conduction electrons of Ru (RKKY coupling). Depending on the samples, the quadratic or antiferromagnetic coupling term is dominant. The hysteresis loop fitting leads to the coupling terms values. The dynamic properties calculus predicts the two resonance frequencies experimentally observed.
|
4 |
Spínaný zdroj s digitální řídící smyčkou / Power switch source with digital loopZápeca, Jan January 2012 (has links)
The diploma thesis is describing how forward converter works. The diploma thesis presents the function of forward converter with demagnetizing winding and presents the function of two-switched forward converter. The diploma thesis descibes the behaviour of continuous current mode and discontinuous current mode. The diploma thesis explains the reasons for implementation feedback and presents the basic types of compensations. The project deals with AC analysis of two-switched forward converter with continuous peak current mode control. The Analog prototyping metod is used for digital control design. The function of the converter was tested in laboratory. The laboratory results have been compared with the theoretical and the simulation results.
|
5 |
Resolving Local Magnetization Structures by Quantitative Magnetic Force Microscopy / Auflösung lokaler Magnetisierungsstrukturen mittels quantitativer MagnetkraftmikroskopieVock, Silvia 22 July 2014 (has links) (PDF)
Zur Aufklärung der lokalen Magnetisierungs- und magnetischen Streufeldstruktur in ferromagnetischen und supraleitenden Materialien wurden magnetkraftmikroskopische (Magnetkraftmikroskopie-MFM) Untersuchungen durchgeführt und quantitativ ausgewertet. Für eine solch quantitative Auswertung muss der Einfluß der verwendeten MFM-Spitzen auf das MFM-Bild bestimmt und in geeigneter Weise subtrahiert werden. Hierzu wurden Spitzenkalibrierungsroutinen und ein Verfahren zur Entfaltung der gemessenen MFM-Daten implementiert, das auf der Wiener Dekonvolution basiert. Mit Hilfe dieser Prozedur können sowohl die räumliche Ausdehnung als auch die Größe der Streufelder direkt aus gemessenen MFM-Bildern bestimmt werden.
Gezeigt wurde diese Anwendung für die Durchmesserbestimmung von Blasendomänen in einer (Co/Pd)-Multilage und für die Bestimmung der temperaturabhängigen magnetischen Eindringtiefe in einem supraleitendem BaFe2(As0.24P0.76)2 Einkristall. Desweiteren konnte durch die Kombination von mikromagnetischen Rechnungen und der quantitativen MFM-Datenanalyse die Existenz einer dreidimensionalen Vortex-Struktur am Ende von Co48Fe52-Nanodrähten nachgewiesen
werden. Damit ist es gelungen die Tiefensensitivität der Magnetkraftmikroskopie erfolgreich in die Rekonstruktion der vermessenen Magnetisierungsstruktur einzubeziehen.
|
6 |
Resolving Local Magnetization Structures by Quantitative Magnetic Force MicroscopyVock, Silvia 09 May 2014 (has links)
Zur Aufklärung der lokalen Magnetisierungs- und magnetischen Streufeldstruktur in ferromagnetischen und supraleitenden Materialien wurden magnetkraftmikroskopische (Magnetkraftmikroskopie-MFM) Untersuchungen durchgeführt und quantitativ ausgewertet. Für eine solch quantitative Auswertung muss der Einfluß der verwendeten MFM-Spitzen auf das MFM-Bild bestimmt und in geeigneter Weise subtrahiert werden. Hierzu wurden Spitzenkalibrierungsroutinen und ein Verfahren zur Entfaltung der gemessenen MFM-Daten implementiert, das auf der Wiener Dekonvolution basiert. Mit Hilfe dieser Prozedur können sowohl die räumliche Ausdehnung als auch die Größe der Streufelder direkt aus gemessenen MFM-Bildern bestimmt werden.
Gezeigt wurde diese Anwendung für die Durchmesserbestimmung von Blasendomänen in einer (Co/Pd)-Multilage und für die Bestimmung der temperaturabhängigen magnetischen Eindringtiefe in einem supraleitendem BaFe2(As0.24P0.76)2 Einkristall. Desweiteren konnte durch die Kombination von mikromagnetischen Rechnungen und der quantitativen MFM-Datenanalyse die Existenz einer dreidimensionalen Vortex-Struktur am Ende von Co48Fe52-Nanodrähten nachgewiesen
werden. Damit ist es gelungen die Tiefensensitivität der Magnetkraftmikroskopie erfolgreich in die Rekonstruktion der vermessenen Magnetisierungsstruktur einzubeziehen.:Introduction 6
1 Contrast formation in Magnetic Force Microscopy (MFM) 9
1.1 Type of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Relevant interaction forces . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Magnetic interaction mechanisms . . . . . . . . . . . . . . . . . . . 11
1.2 Basic magnetostatics of the tip-sample system . . . . . . . . . . . . . . . . 12
1.2.1 General magnetostatic expressions . . . . . . . . . . . . . . . . . . . 12
1.2.2 Description of the tip sample system . . . . . . . . . . . . . . . . . 14
1.2.3 Magnetostatics in Fourier space . . . . . . . . . . . . . . . . . . . . 15
2 Instrumentation 20
2.1 Scanning Force Microscopy (SFM) . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.1 Measurement principle and operation modes . . . . . . . . . . . . . 20
2.1.2 Dynamic mode SFM . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Lift mode MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Non-contact MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Vibrating Sample Magnetometry . . . . . . . . . . . . . . . . . . . . . . . 26
3 Quantitative Magnetic Force Microscopy 28
3.1 The challenge of MFM image inversion . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Description of the problem and state of the art . . . . . . . . . . . 28
3.1.2 The point probe approximations . . . . . . . . . . . . . . . . . . . . 31
3.1.3 The transfer function approach . . . . . . . . . . . . . . . . . . . . 33
3.2 Tip calibration: Adapted Wiener deconvolution . . . . . . . . . . . . . . . 39
3.2.1 Details of the procedure . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Evaluation of possible errors . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 MFM probes and their specific characteristics . . . . . . . . . . . . . . . . 49
3.5 Calibration samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Detection of tip-sample modification . . . . . . . . . . . . . . . . . . . . . 55
4 Quantitative MFM with iron filled carbon nanotube sensors (Fe-CNT) 56
4.1 The monopole character of Fe-CNT sensors . . . . . . . . . . . . . . . . . . 57
4.1.1 Calibration within the point probe approximation . . . . . . . . . . 57
4.1.2 Calibration results and discussion . . . . . . . . . . . . . . . . . . . 59
4.1.3 Quantitative MFM on a [Co/Pt]/Co/Ru multilayer . . . . . . . . . 62
4.2 Inplane sensitive MFM with Fe-CNT sensors . . . . . . . . . . . . . . . . . 63
4.2.1 Bimodal MFM technique . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Comparison between calculated and measured in-plane contrast . . 66
5 Quantification of magnetic nanoobjects in MFM measurements 70
5.1 Bubble domains in a [Co/Pd]80 multilayer . . . . . . . . . . . . . . . . . . 71
5.1.1 Micromagnetic model . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 MFM image simulation . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Quantitative assessment of the magnetic penetration depth in superconductors 78
5.2.1 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Experimental determination of the temperature dependent penetration
depth in a BaFe2(As0:24P0:76)2 single crystal . . . . . . . . . . . 83
6 Magnetization studies of CoFe nanowire arrays on a local and global scale 87
6.1 Revisiting the estimation of demagnetizing fields in magnetic nanowire arrays 88
6.1.1 Available approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.2 Calculation of demagnetizing fields in nanowire arrays . . . . . . . . 91
6.2 Micromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Combination of demagnetizing field calculations and micromagnetic simulation100
6.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 Global hysteresis measurements of CoFe nanowire arrays with varying length 104
6.6 Local magnetic characterization of a CoFe nanowire array by quantitative
MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6.1 Magnetic structure of individual nanowires . . . . . . . . . . . . . . 107
6.6.2 Magnetization reversal of the nanowire array . . . . . . . . . . . . . 110
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Conclusions and Outlook 119
Bibliography 121
Acknowledgements 135
|
Page generated in 0.0757 seconds